
Causal Interpretation of Regressions With Ranks

Lihua Lei ∗

May 31, 2024

Abstract

In studies of educational production function or intergenerational mobility, it is
common to transform the key variables into percentile ranks. Yet, it remains unclear
what the regression coefficient estimates with ranks of the outcome or the treatment.
In this paper, we derive the effective causal estimand for a broad class of commonly-
used regression methods, including the ordinary least squares, two-stage least squares
(2SLS), difference-in-differences (DiD), and regression discontinuity designs (RDD).
Specifically, we introduce a novel primitive causal estimand, the Rank Average Treat-
ment Effect (Rank ATE), and prove that it serves as the foundational building block
of the effective estimands of all the aforementioned econometrics methods. For 2SLS,
DiD, and RDD, we show that direct applications to outcome ranks identify parameters
that are difficult to interpret. To address this issue, we develop alternative methods to
identify more interpretable causal parameters.

1 Introduction

Rank transformations are often applied to variables without natural units, such as test scores
[e.g. Krueger, 1999]), to enhance cross-outcome comparability or variables with heavy tails,
such as income [e.g. Chetty et al., 2014, Mogstad et al., 2024], to avoid excessive influences
of extreme observations. In both cases, it was found that the rank transformation tends
to reduce sensitivity to specifications [e.g. Dahl and DeLeire, 2008]. A recent survey by
Chetverikov and Wilhelm [2023] found 119 papers that contain rank regressions in the Top-
5 Economics journals published since 2013.

Despite the popularity of rank transformations in applied research, the causal interpre-
tation of regression coefficients remains unclear when dependent or independent variables
are transformed into ranks. For example, Chetty et al. [2020] obtained an estimate of the
relative mobility, defined as the coefficient of the parents’ income rank in the regression of
the child’s income rank, of 0.35 using the full US sample that pools all races. This was
interpreted as “a 10 percentile increase in parents’ rank is associated with a 3.5 percentile
increase in children’s rank on average”. It is known that this coefficient is equivalent to the
Spearman’s rank correlation coefficient [Spearman, 1904] between the parents’ and child’s
incomes, assuming that the income distribution is continuous [e.g. Chetverikov and Wilhelm,
2023]. However, it is unclear if the Spearman’s correlation measures any interventional effect
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in a thought experiment where parents’ incomes are randomized or exposed to exogeneous
shocks. Ideally, we would want to interpret the coefficient through the distributions of the
child’s counterfactual incomes had the parents’ income been a certain amount.

For regressions with ranks only in one side, even the effective estimands have yet been
understood. For example, Krueger [1999] regressed the percentile ranks of test scores on
the assignment of class types (i.e., a small class, a regular class, or a regular class with
teacher aid) along with other controls using the Tennessee STAR data [Boyd-Zaharias et al.,
2007]. Through the OLS estimate he found that “the gap in average performance is about 5
percentile points in kindergarten, 8.6 points in first grade, and 5–6 points in second and third
grade.” While this suggests a positive effect of smaller class sizes, it is harder to interpret
the effect size. Ideally, we would want to express this coefficient through the distributions of
potential test scores had the student been assigned into each class type. The interpretation
can be further complicated for more sophisticated econometric methods such as the two-
stage least squares, which is also applied to analyze the effect of small classes on STAR data
to address non-compliance [Krueger, 1999].

In this paper, we derive the effective estimands as well as their causal interpretations for
a suite of econometric methods including the ordinary least squares (OLS), two-stage least
squares (2SLS), difference-in-differences (DiD), and regression discontinuity designs (RDD)
under a variety of standard assumptions in the econometrics literature. Unlike Chetverikov
and Wilhelm [2023], we do not discuss statistical inference for these estimators, except for
a few results, and many of their results can be directly applied here. Moreover, we consider
continuous outcomes in most the results and not study the effect of tie-breaking for discrete
outcomes as in Chetverikov and Wilhelm [2023].

We start by introducing a primitive causal estimand which we call the Rank Average
Treatment Effect (rank-ATE). The estimand had been studied in the statistics and machine
learning literature, though in very different contexts. Akin to the standard ATE, it compares
the distributions of outcomes under two treatment conditions, though not through the mean
difference. We prove that the rank-ATE shares many desirable properties with the ATE and
they have the same signs in a variety of scenarios.

For a randomized experiment with a binary treatment, we prove that the OLS with
outcomes ranked based on the entire sample identifies the rank-ATE. This result remains if
extra covariates that are not affected by the treatment are included. More surprisingly, we
show that the effective estimand remains the same if the outcomes are ranked based solely on
the treatment (or control) units. We call this property reference robustness and show that
it is only satisfied by the OLS but not other aforementioned econometric methods. When
the assignment is confounded under the selection on observables (or strong ignorability)
assumption, we show that the effective estimand is a weighted average of covariate-specific
rank-ATE, in a similar spirit to Angrist [1995] and Borusyak and Hull [2024] for linear
regressions.

Moving beyond the binary treatment, we consider general multi-valued or continuous
treatments and allow for transformation of the treatment variable in the regression. This in-
cludes the rank-rank regression [e.g. Dahl and DeLeire, 2008, Chetty et al., 2014, Chetverikov
and Wilhelm, 2023] and binscatter regression [Cattaneo et al., 2024] as special cases. When
the treatment is randomized, we prove that the effective OLS estimand is a weighted av-
erage of rank-ATEs that compare the potential outcomes at each level of treatment. Since
the weights depend on the scale of the transformed treatment, the estimates for different
treatment variables are generally incomparable. We propose a data-driven normalization
procedure that restrict the estimand in the same range regardless of the choice of variables.
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For other econometric methods, the effective estimands and causal interpretations are
more delicate. To avoid mathematical complications, we focus on the case where the out-
comes are transformed into ranks and the treatment variable is binary. We briefly summarize
our findings below.

• (2SLS) We introduce the rank-local average treatment effect (rank-LATE) as the rank-
ATE for compliers, which can be viewed as a natural extension of LATE [Imbens and
Angrist, 1994]. When the instrument variable (IV) is binary and randomized, under
standard assumptions, we show that the 2SLS does not recover the rank-LATE and its
estimand can have an opposite sign. Further, we show that the 2SLS does not enjoy
reference robustness and ranking based on neither treated nor control group recovers
the rank-LATE. To address this issue, we propose a new ranking procedure based on
an estimated potential outcome distribution for compliers and prove that it identifies
the rank-2SLS without additional assumptions.

• (DiD) For simplicity, we focus on the case with one pre-treatment period and one post-
treatment period. We start by introducing a natural extension of the standard parallel
trend assumption. The rank version is non-nested with the standard version or the
counterpart for distributional DiD [Havnes and Mogstad, 2015, Roth and Sant’Anna,
2023], but implied by the identifying assumption for change-in-changes (CiC, Athey
and Imbens [2006]) or the copula stability assumption [Ghanem et al., 2023]. Nev-
ertheless, we prove that the DiD estimator on outcome ranks does not identify the
rank analogue of the average treatment effect on the treated (rank-ATT); instead, the
effective estimand is hard to interpret and not necessarily same-signed as the rank-
ATT. We then propose a counterfactual ranking method and show the resulting DiD
estimator recovers the rank-ATT under under the assumptions for CiC [Athey and
Imbens, 2006] or distributional DiD [Roth and Sant’Anna, 2023].

• (RDD) For level outcomes, the estimand is the ATE at the cutoff for sharp RDD
[Imbens and Lemieux, 2008, Lee and Lemieux, 2010]. We prove that, when the out-
comes are ranked based on the entire sample, the RDD estimator fails to recover the
rank-ATE at the cutoff due to contamination of points further away from the cutoff.
By strengthening the mean continuity into a distributional continuity assumption, we
propose a local ranking method that identifies the rank-ATE at the cutoff for sharp
RDD.

We conclude the paper by discussing a substantive limitation of the rank-ATE: unlike
the standard ATE, it cannot be expressed as an expected individual-level treatment effect.
Chen and Roth [2023] argued that the latter is a desirable property for the purpose of causal
interpretations. Motivated by this concern, we propose an alternative partially identified
estimand . The sharp identified set can be estimated by the standard plug-in methods [Fan
and Park, 2010] or the robust dual methods [Ji et al., 2023].

1.1 Notation and preliminaries

Suppose we have n units and, for unit i ∈ {1, . . . , n}, Yi denotes the outcome of interest,
Wi denotes the treatment variable which can be binary or continuous, and Xi ∈ Rd denotes
the vector of covariates. Let RY

i denote the rank of Yi among {Y1, . . . , Yn}, i.e.,

RY

i =

n∑
j=1

I(Yj ≤ Yi). (1)

3



Let F̂Y,n be the empirical cumulative distribution function (CDF) of {Y1, . . . , Yn}, i.e.,

F̂Y,n(y) =
1

n

n∑
j=1

I(Yj ≤ y).

Then we can rewrite RY
i as

RY

i = nF̂Y,n(Yi). (2)

Throughout the note we assume that (Yi,Wi, Xi) are i.i.d. where FY denotes the marginal
distribution of Yi, FY |w the conditional distribution of Yi given Wi = w, and FY |w,z the
conditional distribution of Yi given Wi = w and Xi = z. When no confusion can arise,
we will use (Y,W,X) to denote a generic independent draw from the same distribution as
(Yi,Wi, Xi). Throughout we adopt the standard probability notation O(·), o(·), OP(·), oP(·).

An immediate yet crucial implication of the celebrated Dvoretzky–Kiefer–Wolfowitz in-
equality [Dvoretzky et al., 1956, Massart, 1990] is that

max
i

∣∣∣∣RY
i

n
− FY (Yi)

∣∣∣∣ ≤ sup
y∈R

|F̂Y,n(y)− FY (y)| = OP

(
1√
n

)
. (3)

This suggests, and we will make it rigorous, that RY
i can be replaced by FY (Yi) when the

goal is to prove consistency of a parameter estimate. For inferential purposes like hypothesis
testing or confidence intervals, more sophiscated techniques would be involved [Chetverikov
and Wilhelm, 2023].

2 Rank-ATE: a primitive causal estimand

Let F1 and F0 be the distributions of a scalar outcome under two treatment conditions. Most
point identified treatment effects are functionals of (F1, F0) that measure the distributional
discrepancy through certain summaries.1 For example, the standard ATE is the mean
difference and the logarithm of the ratio ATE (or the Poisson regression estimand [Silva
and Tenreyro, 2006, Wooldridge, 2010]) is the difference of log-means. Here, we define the
rank-ATE τr as follows:

τr(F1, F0) = P(Z1 ≥ Z0)−
1

2
, where Z1 ∼ F1, Z0 ∼ F0, Z1 ⊥⊥ Z0. (4)

The rank-ATE always takes values in [−1/2, 1/2]. Clearly, τr(F1, F0) measures the proba-
bility that a randomly drawn sample from F1 is larger than or equal to a randomly drawn
sample from F0. Unlike the ATE that requires the existence of finite first moments, the
rank-ATE is always well-defined. An equivalent expression for τr(F1, F0) is given by

τr(F1, F0) = EZ1∼F1
[F0(Z1)]−

1

2
. (5)

We illustrate this estimand through the following examples.

1Causal effects as functionals of the joint distribution of potential outcomes are only partially identified
without further assumptions since the potential outcomes are never observed simultaneously [e.g. Fan and
Park, 2010, Ji et al., 2023].
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Example 2.1. If Z1 = µ1+ ν1 and Z0 = µ0+ ν0 for some symmetrically distributed ν1 and
ν0 that are not necessarily identically distributed,

P(Z1 ≥ Z0) = P(ν1 − ν0 ≥ µ0 − µ1), (6)

where ν0 is an independent copy of ν0. Since ν1 and ν0 are independent and symmetrically
distributed, so is the difference ν1 − ν0. As a result,

τr(F1, F0) > 0 ⇐⇒ µ1 > µ0, (7)

Thus the rank-ATE has the same sign as the standard ATE, if exists.

Example 2.2. If Z1 = µ1 + ν1 and Z0 = µ0 + ν0 for some identically distributed ν1 and ν0
with arbitrary distributions. Then ν1−ν0 is symmetrically distributed. By (6), the rank-ATE
and ATE, if exists, have the same signs.

Example 2.3. If Z1 (first-order) stochastically dominates Z0, then there exists a random
variable Z ′

0 that is equally distributed as Z0 and Z ′
0 ≤ Z1 almost surely. Thus,

τr(F1, F0) ≥ P(Z ′
0 ≥ Z0)−

1

2
= 0.

Thus, the rank-ATE also has the same sign as the ATE, if exists.

The rank-ATE has the following nice properties.

• (Linearity) for any distributions F1, F
′
1, F0, F

′
0 and α1, α0 ∈ (0, 1),

τr(α1F1 + (1− α1)F
′
1, F0) = α1τr(F1, F0) + (1− α1)τr(F

′
1, F0),

and
τr(F1, α0F0 + (1− α0)F

′
0) = α0τr(F1, F0) + (1− α0)τr(F1, F

′
0).

• (Anti-symmetry) when F1 and F0 are both absolutely continuous,

τr(F0, F1) = −τr(F1, F0).

In particular, τr(F, F ) = 0 for any continuous distribution F .

• (Invariance) for any strictly increasing function f ,

τr(F0, F1) = τr(F0 ◦ f−1, F1 ◦ f−1).

• (Partial additivity) for any ζ ∈ [0, 1],

τr(F1, ζF1 + (1− ζ)F0)− τr(F0, ζF1 + (1− ζ)F0) = τr(F1, F0).

We call the last property partial additivity because it only holds when the second argument
of the first two terms is in the class {ζF1+(1−ζ)F0 : ζ ∈ [0, 1]}. Note that the ATE satisfies
all but invariance, which is a desirable property especially when the variables do not have a
natural unit. The first three properties can be proved directly by definition and the partial
additivity is proved in Appendix A.

The rank-ATE has been studied in different contexts. In particular, it is the effective
estimand of the Mann-Whitney test, also known as the Wilcoxon rank-sum test [e.g. Ver-
meulen et al., 2015]. It was also shown to be equivalent to the Area Under the Receiver
Operating Characteristic curve (AUROC, also known as AUC), one of the most important
measures in evaluating classification algorithms [Hanley and McNeil, 1982].
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3 Rank-OLS with a binary treatment

In this section, we study the case where Wi is binary. Let (n1, n0) denote the size of the
treated and control groups, respectively, π = P(Wi = 1) the marginal treatment intensity,
and π(z) = P(Wi = 1 | Xi = z) the propensity score. Furthermore, we let (Yi(1), Yi(0))
denote the pair of potential outcomes for unit i. Throughout the section we assume SUTVA:

Assumption 3.1. For all i = 1, . . . , n,

Yi = Yi(1)Wi + Yi(0)(1−Wi).

Let FY (1) and FY (0) denote the marginal distributions of Y (1) and Y (0), respectively.
Clearly,

FY = πFY (1) + (1− π)FY (0). (8)

We further assume that Y (1) and Y (0) are continuous variables:

Assumption 3.2. FY (1) and FY (0) are both absolutely continuous.

Even if Y (1) and Y (0) are discrete, one can perturb Y (1) and Y (0) by a random noise
uniformly distributed on [−ϵ, ϵ] for some sufficiently small ϵ. This is equivalent to random
tie-breaking in practice considering that all variables are discretized by rounding.

3.1 Rank-OLS without covariates under random assignments

As a warmup, we consider the rank-OLS estimator without covariates, defined as follows:

β̂nox = argmin
1

n

n∑
i=1

(
RY

i

n
− β0 − βWi

)2

. (9)

Above, the ranks are normalized by n for ease of interpretation, as evidenced later, and
the subscript indicates that no covariate is used. We study the property of β̂nox when
assignments are completely random as in randomized experiments or quais-experiments:

Assumption 3.3. For all i = 1, . . . , n,

P(Wi = 1 | Yi(1), Yi(0), Xi) = π ∈ (0, 1).

Then we can prove the following result that the rank-OLS identifies the rank-ATE.

Theorem 3.1. Under Assumptions 3.1, 3.2, and 3.3, as n → ∞,

β̂nox

p→ τr(FY (1), FY (0)). (10)

An intriguing question is how the estimand changes with the reference population for
ranking. In pricinple, one could rank each outcome among all units or among treated or
control units. Specifically, define two other ranks as follows:

RY

i,w =
∑

j:Wj=w

I(Yj ≤ Yi), w = 0, 1,
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and consider the corresponding rank-OLS:

β̂nox,1 = argmin
1

n

n∑
i=1

(
RY

i,w

nw
− β0 − βWi

)2

, w = 0, 1.

Note that we use different normalizations because the range of RY
i,1 and RY

i,0 are different.

Surprisingly, both β̂nox,1 and β̂nox,0 are equal to β̂nox up to a small factor.

Theorem 3.2. Assuming no ties among Yis,

β̂nox,1 = β̂nox +
1

2n1
, β̂nox,0 = β̂nox −

1

2n0
.

As a result, if n1, n0 → ∞ as n → ∞,

β̂nox,1
p→ τr(FY (1), FY (0)), β̂nox,0

p→ τr(FY (1), FY (0)).

3.2 Rank-OLS with covariates under random assignments

In practice, covariates are often added into the regression for the purpose of adjusting for
confounders or improving statistical efficiency. We consider two versions of rank-OLS, one
without interactions and one with interactions between the treatment and covariates:

β̂ = argmin
1

n

n∑
i=1

(
RY

i

n
− β0 − βWi −X⊤

i η

)2

, (11)

and

β̂int = argmin
1

n

n∑
i=1

(
RY

i

n
− β0 − βWi −X⊤

i η −Wi(Xi − X̄)⊤η̃

)2

, (12)

where X̄ = (1/n)
∑n

i=1 Xi. The former estimator is widely used in applied work and the
latter estimator is much less so. The latter estimator is equivalent to running separate
regressions on the treated and control units with centered covariates Xi−X̄ and contrasting
the intercepts. Our motivation to consider β̂int is from the regression adjustment literature
[e.g. Freedman, 2008, Lin, 2013, Li and Ding, 2020, Lei and Ding, 2021, Negi andWooldridge,
2021], which reveals the intriguing fact that, when applied to the original outcome instead of

the ranks, β̂int is guaranteed to be more precise than β̂nox and β̂ under completely randomized
experiments without any assumption on how the outcome Yi depends on Wi and Xi. By
contrast, β̂ could be even less precise than β̂nox when the relationship between Yi,Wi and
Xi is highly nonlinear.

The following result shows that the OLS estimand remains the same under the following
mild regularity condition.

Assumption 3.4. 0 < λmin(E[XX ′]) ≤ λmax(E[XX ′]) < ∞ where λmin and λmax denotes
the minimal and maximal eigenvalues.

Theorem 3.3. In the setting of Theorem 3.1 and assuming Assumption 3.4, as n → ∞,

β̂
p→ τr(FY (1), FY (0)), and β̂int

p→ τr(FY (1), FY (0)).
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3.3 Rank-OLS with covariates under confounded assignments

In this subsection, we relax the assumption of random assignments and assume the propen-
sity score π(z) is varying with z. To make progress, we assume strong ignorability or
selection on observables:

Assumption 3.5. Yi(1), Yi(0) ⊥⊥ Wi | Xi.

In addition, we assume strict overlap or positivity [e.g. D’Amour et al., 2021]:

Assumption 3.6. There exist constants c ∈ (0, 1) such that π(z) ∈ [c, 1− c] for all z.

We start by stating a generic result that shows β̂ converges to a weighted average of
conditional rank-ATEs.

Theorem 3.4. Let π̃(X) be the population projection of π(X) onto the linear space of X,
i.e.,

π̃(X) = X⊤ω∗, where ω∗ = argmin
ω

E[(π(X)−X⊤ω)2] = (E[XX ′])−1E[Xπ(X)].

Assume one of the following assumptions hold:

(a) π(X) = X⊤ω∗;

(b) E[FY (Y (0)) | X] = X⊤η∗ for some η∗ ∈ Rd.

Then

β̂
p→ E

[
w(X)

E[w(X)]
τr(FY (1)|X , FY (0)|X)

]
, where w(X) = π(X)(1− π̃(X))

The condition (a) and (b) are similar to the ones in Borusyak and Hull [2024]. In partic-
ular, the condition (b) is the analogue of the classical assumption of saturated specification

[Angrist, 1995]. When π̃(X) ∈ [0, 1], the effective estimand of β̂ is a convex average of
conditional rank-ATEs.

4 Rank-OLS with a general treatment

In this section, we consider a general treatment Wi ∈ W ⊂ R, where W can be a finite or
infinite set. Define the rank of Wi as

RW

i =
1

n

n∑
j=1

I(Wj ≤ Wi).

Let FW denote the marginal distribution of W , Y (w) the potential outcome for dose w, and
FY (w) the marginal distribution of Y (w). We make the following assumptions as analogues
of Assumptions 3.1 and 3.2.

Assumption 4.1. For all i = 1, . . . , n, Yi = Yi(Wi).

Assumption 4.2. FY (w) is absolutely continuous for any w ∈ R.
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4.1 Rank-OLS under random assignments

We consider the rank-OLS estimator with a transformed treatment:

β̂hn
= argmin

1

n

n∑
i=1

(
RY

i

n
− γ0 − γhn (Wi)−X⊤

i η

)2

, (13)

where hn is any function that potentially depends on data (and hence is potentially random).
This nests a broad class of regressions in applied work. For example, when hn is the identity
mapping, β̂hn recovers β̂ studied in Section 3.2. Another widely-used class of regressions
that is nested in (13) is the rank-rank regressions:

γ̂gn = argmin
1

n

n∑
i=1

(
RY

i

n
− γ0 − γgn

(
RW

i

n

)
−X⊤

i η

)2

. (14)

In particular, γ̂gn is identical to β̂hn with hn = gn ◦ F̂W where F̂W is the empirical CDF
of Wis. When gn is the identity mapping, (14) is the standard rank-rank regression [e.g.
Chetverikov and Wilhelm, 2023]. It also nests regressions that dichotomize Wi by choosing
gn(r) = I(r > 1/2) or those that coarsen Wi into quartiles/quintiles/deciles by choosing a
stepwise function.

It is known that, when Yi is continuous, gn(r) = r, and no covariate is included, γ̂nox is
equivalent to the Spearman’s rank correlation [e.g. Chetverikov and Wilhelm, 2023]. The
estimand can be equivalently expressed as Cor(FW (W ), FY (Y )) where Cor denotes the
Pearson correlation coefficient. However, the causal interpretation of this estimand is un-
derexplored. We first derive an expression of the estimand in terms of potential outcomes
when Wi is randomly assigned:

Assumption 4.3. For all i = 1, . . . , n,

Wi | ({Yi(w) : w ∈ W}, Xi) ∼ FW .

To study the limit of β̂hn
, we impose the following assumption on limited dependence of

hn on data. It is easy to check that the aforementioned examples all satisfy the assumption.

Assumption 4.4. There exists a non-stochastic function h : [0, 1] 7→ R such that, as
n → ∞,

n∑
i=1

(hn(Wi)− h(Wi))
2
= OP(1).

For rank-rank OLS estimators, by (3), Assumption 4.4 so long as

n∑
i=1

(gn(Wi)− g(Wi))
2
= OP(1),

for some non-stochastic function g.

Theorem 4.1. Under Assumptions 4.1, 4.2, 4.3, and 4.4, the rank-OLS estimator defined
in (13) has the following limit as n → ∞:

β̂hn

p→ β∗
h ≜ E

[
b(W, W̃ )

E[b2(W, W̃ )]
τr

(
FY (W ), FY (W̃ )

)]
, (15)
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where (W, W̃ ) are two independent draws from FW and

b(W, W̃ ) = (h(W )− h(W̃ ))I(W > W̃ ). (16)

Clearly, when h is monotonely increasing, b(W, W̃ ) ≥ 0. In this case, Theorem 4.1
implies that the effective estimand is a weighted sum of τr

(
FY (w), FY (w̃)

)
for all dose pairs

(w, w̃) with w ≥ w̃ with non-negative weights.
To further illustrate the estimand, we consider the following examples as extensions of

Example 2.1 to 2.3.

Example 4.1. If Y (w) = µ(w) + ν(w) where ν(w) is symmetrically distributed for each
w, then β∗

h ≥ 0 if µ(w) is weakly increasing in w. For example, the conditions are satisfied
when Y (w) is a Gaussian process with weakly increasing mean function.

Example 4.2. If Y (w) = µ(w) + ν(w) where ν(w) and ν(w̃) are identically distributed for
each pair (w, w̃). Then β∗

h ≥ 0 if µ(w) is weakly increasing in w whenever µ(w) is weakly
increasing.

Example 4.3. If Y (w) is weakly stochastically increasing in w, then β∗
h ≥ 0.

We further provide examples with different hn.

Example 4.4. If Wi is binary and hn(w) = w, β̂hn = β̂nox. In this case, FW (W ) =
W + (1− π)(1−W ) and thus,

b(W, W̃ ) = I(W = 1, W̃ = 0) = W (1− W̃ ).

Then

β∗
h =

E[W (1− W̃ )τr(FY (1), FY (0))]

E[W (1− W̃ )]
= τr(FY (1), FY (0)).

Example 4.5. Suppose Wi is continuous and gn(r) = I(r > 1/2) in the rank-rank OLS.
Let mW be the median of Wi. Then

b(W, W̃ ) = I(W > mW > W̃ ).

Under Assumption 4.3, FY |W = FY (W )|W . Thus,

β∗
h = 4E[τr(FY (W ), FY (W̃ ))I(W > mW )I(W̃ < mW )]

= 4E[τr(FY |W , FY |W̃ )I(W > mW )I(W̃ < mW )]

= τr(FY |W>mW
, FY |W<mW

),

where the last line invokes linearity of τr(·, ·).

4.1.1 Normalizing hn for comparability across different treatment variables?

To enable comparison of the OLS estimates across different treatment variables, we need
to enforce the estimands to have the same scale. It suffices to ensure that β∗

h is a convex
average of pairwise effects {τr

(
FY (w), FY (w̃)

)
: w > w̃}, in which case β∗

h ∈ [−1/2, 1/2]. To
achieve this, we can rescale hn such that

E[b(W, W̃ )] = E[b2(W, W̃ )]. (17)
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For any given hn, we can replace it by

E[(hn(W )− hn(W̃ ))I(W > W̃ )]

E[(hn(W )− hn(W̃ ))2I(W > W̃ )]
· hn.

Both the numerator and denominator can be estimated by U-statistics:

h̃n(w) = κ̂hn(w), where κ̂ =

∑
i ̸=j(hn(Wi)− hn(Wj))I(Wi > Wj)∑
i̸=j(hn(Wi)− hn(Wj))2I(Wi > Wj)

. (18)

For example, when hn(w) = w as in the case of binary treatment, κ̂ = 1. When hn(w) =
F̂W (w),

κ̂ =
(1/n)

∑
i>j(i− j)

(1/n2)
∑

i>j(i− j)2
=

(1/n)
∑

i i(i− 1)/2

(1/n2)
∑

i(i− 1)i(2i− 1)/6
=

(n+ 1)(n− 1)/6

(n+ 1)(n− 1)/12
= 2.

Thus, we need to replace RW
i /n by 2RW

i /n.

5 Other econometric methods with ranks

To ease exposition and highlight the main point, we limit our discussion to binary treatments
and exclude the consideration of covariates.

5.1 Rank-2SLS with a binary IV

Let Zi be a valid binary instrumental variable, (Wi(1),Wi(0)) be the potential treatment
takeup, and {Yi(w, z) : w, z ∈ {0, 1}} be the potential outcomes. We make the standard IV
assumptions [Angrist et al., 1996].

Assumption 5.1. For all i = 1, . . . , n,

(a) (exclusion restriction) Yi(w, 1) = Yi(w, 0) ≜ Yi(w) for w = 0, 1;

(b) (ignorability) Zi ⊥⊥ (Wi(1),Wi(0), Yi(1), Yi(0));

(c) (monotonicity) Wi(1) ≥ Wi(0) almost surely.

(d) (relevance) P(W = 1 | Z = 1) > P(W = 1 | Z = 0).

Further, we let Gi denote the type of the unit i (i.e., always-taker, never-taker, and
complier) with

Gi =

 a Wi(1) = Wi(0) = 1
n Wi(1) = Wi(0) = 0
c Wi(1) = 1,Wi(0) = 0.

.

Throughout this secvtion we assume that (Zi,Wi(1),Wi(0), Yi(1), Yi(0), Gi) are i.i.d. and
denote by (Z,W (1),W (0), Y (1), Y (0), G) a generic draw. For each g ∈ {a, n, c} and w ∈
{0, 1}, let FY (w)|g denote the conditional distribution of Y (w) given G = g.

Let β̂2SLS, β̂2SLS,1, β̂2SLS,0 denote the 2SLS estimators applied to RY
i /n, RY

i,1/n1, and
RY

i,0/n0, respectively. First, we derive the effective estimand of 2SLS applied to different
types of ranks.

11



Theorem 5.1. Under Assumptions 3.1, 3.2 and 5.1, as n → ∞,

β̂2SLS

p→ τr(FY (1)|c, FY )− τr(FY (0)|c, FY ),

β̂2SLS,1
p→ τr(FY (1)|c, FY |W=1)− τr(FY (0)|c, FY |W=1),

β̂2SLS,0
p→ τr(FY (1)|c, FY |W=0)− τr(FY (0)|c, FY |W=0),

Without further assumptions, the above estimands are mutually different.

Theorem 5.1 suggests that, unlike the rank-OLS estimator, the rank-2SLS estimator is
no longer reference-robust. In addition, none of these estimands are as easily interpretable
as the rank-ATE.

Since LATE is the mean difference of potential outcomes for compliers, it is natural to
consider the rank-LATE, defined as the rank-ATE for compliers:

rank-LATE ≜ τr(FY (1)|c, FY (0)|c). (19)

The following result shows that rank-LATE can be obtained by ranking the outcomes among
the compliers.

Theorem 5.2. Fix any ζ ∈ [0, 1]. Let F̂Y (w)|c be consistent estimates of FY (w)|c in the sense

of (3). Further let β̂2SLS,ζ,c denote the 2SLS estimator applied to ζF̂Y (1)|c + (1− ζ)F̂Y (0)|c.
Then, as n → ∞,

β̂2SLS,ζ,c
p→ τr(FY (1)|c, FY (0)|c).

Theorem 5.2 implies that this new 2SLS estimator identifies the rank-LATE and enjoys
reference robustness as the rank-OLS estimator under randomized assignments.

The next result shows that FY (1)|c and FY (0)|c can be identified under no additional
assumptions.

Theorem 5.3. For any y ∈ R, w, z ∈ {0, 1}, let

Fwz(y) = P(Y ≤ y | W = w,Z = z).

Then, in the setting of Theorem 5.1,

FY (1)|c =
πa + πc

πc

(
F11 −

πa
πa + πc

F10

)
, (20)

and

FY (0)|c =
πn + πc

πc

(
F00 −

πn
πn + πc

F01

)
. (21)

For each w, z ∈ {0, 1}, Fwz can be consistently estimated by the empirical CDF of Yis
among the units with Wi = w,Zi = z. Classical IV theory [Imbens and Angrist, 1994]
implies that

n10

n0

p→ πa,
n01

n1

p→ πn,
n11

n1
− n10

n0

p→ πc

where nwz is the number of units with Wi = w,Zi = z and nz is the number of units with
Zi = z.
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5.2 Rank-DiD

We focus on the standard DiD setting with one pre-treatment period, indexed by 0, and
one post-treatment period, indexed by 1. For each t = 0, 1, let (Yit(1), Yit(0)) denote the
potential outcomes of unit i at time t and Wi denote the treatment status at time 1. Further
let RY

it denote the rank of Yit among {Yjt : j = 1, . . . , n}. Clearly,

RY

it = nF̂Yt,n(Yit),

where F̂Yt,n is the empirical CDF of {Yjt : j = 1, . . . , n}.
Throughout the section we assume (Yi0(1), Yi0(0), Yi1(1), Yi1(0),Wi) are i.i.d. and denote

by (Y0(1), Y0(0), Y1(1), Y1(0),W ) a generic draw. Similar to the cross-sectional case, we make
the following assumptions.

Assumption 5.2. For all i = 1, . . . , n,

Yi1 = Yi1(1)Wi + Yi1(0)(1−Wi), Yi0 = Yi0(0).

Assumption 5.3. FYt(w) is absolutely continuous for any w, t ∈ {0, 1}.

The standard rank-DiD estimator is defined as

β̂DiD =
1

n1

∑
i:Wi=1

(
RY

i1

n
− RY

i0

n

)
− 1

n0

∑
i:Wi=0

(
RY

i1

n
− RY

i0

n

)
. (22)

Without rank transformation, the usual estimand for DiD is the average treatment effect
on the treated (ATT) E[Y (1)− Y (0) | W = 1]. A natural definition of rank-ATT is

β∗
DiD = τr(FY1(1)|W=1, FY1(0)|W=1). (23)

The parallel trend assumption for original outcomes states that

E[Y1(0)− Y0(0) | W = 1] = E[Y1(0)− Y0(0) | W = 0].

This can be rewritten as

E[Y1(0) | W = 1]− E[Y1(0) | W = 0] = E[Y0(0) | W = 1]− E[Y0(0) | W = 0].

The left-hand side is the mean difference between FY1(0)|W=1 and FY1(0)|W=0 and the right-
hand side is the mean difference between FY0(0)|W=1 and FY0(0)|W=0. Motivated by this
expression, we define the rank parallel trend assumption as follows.

Assumption 5.4. τr(FY1(0)|W=1, FY1(0)|W=0) = τr(FY0(0)|W=1, FY0(0)|W=0).

Note that Assumption 5.4 is not equivalent to

τr(FY1(0)|W=1, FY0(0)|W=1) = τr(FY1(0)|W=0, FY0(0)|W=0). (24)

We show that the identifying assumption for CiC implies Assumption 5.4 but not (24).

Example 5.1. Let Ui be a unit-level time-invariant unobserved confounder Ui and f0, f1
be two strictly increasing functions. Further, let

Yit(0) = ft(Ui), i = 1, . . . , n, t = 0, 1.

13



This generalizes the classical two-way-fixed-effects model and is shown to be equivalent to
the identifying assumption for CiC:

FY1(0)|W=1 = FY0(0)|W=1 ◦ F−1
Y0(0)|W=0 ◦ FY1(0)|W=0 (25)

Then the rank of Yit(0) among all control potential outcomes at time t is invariant across
time. Any definition of rank parallel trend should be met by this example. In fact, Assump-
tion 5.4 holds because for t = 0, 1,

τr(FYt(0)|W=1, FYt(0)|W=0) = τr(Fft(U)|W=1, Fft(U)|W=0) = τr(FU |W=1, FU |W=0),

where the last step applies the invariance property of β∗. By contrast, (24) does not hold
unless f0 = f1, in which case the distribution of Yt(0) remains constant over time.

We prove that the effective estimand for the standard rank-DiD estimator is not the
rank-ATT and could have a different sign.

Theorem 5.4. Under Assumptions 5.2, 5.3, and 5.4, as n → ∞,

β̂DiD

p→ τr(FY1(1)|W=1, FY1(0)|W=0)− τr(FY1(0)|W=1, FY1(0)|W=0).

Without further assumptions, the right-hand side is not equal to β∗
DiD. Furthermore, re-

placing RY
it by their ranks among the treated or control units at time t does not change the

limit.

To identify the rank-LATE, we need to rank outcomes based on another reference dis-
tribution. Let F̂Y1(0)|W=1 be an estimate of the counterfactual distribution FY1(0)|W=1. We

define a modified rank-DiD estimator by replacing RY
i1/n with F̂Y1(0)|W=1(Yi):

β̂mDiD =
1

n1

∑
i:Wi=1

(
F̂Y1(0)|W=1(Yi)−

RY
i0

n

)
− 1

n0

∑
i:Wi=0

(
F̂Y1(0)|W=1(Yi)−

RY
i0

n

)
. (26)

Theorem 5.5. Assume that F̂Y1(0)|W=1 is a consistent estimate of FY1(0)|W=1 in the sense
of (3). In the setting of Theorem 5.4, as n → ∞,

β̂DiD

p→ β∗
DiD.

Unfortunately, the rank parallel trend assumption does not imply identification of FY1(0)|W=1.
Nevertheless, it can be consistently estimated under the identifying assumption of CiC
[Athey and Imbens, 2006] or distributional DiD [Roth and Sant’Anna, 2023]. Since the
former implies the rank parallel trend condition, the rank-ATT can be identified under the
same assumptions as CiC.

5.3 Rank-RDD

We consider the standard RDD setting where Xi is a continuous one-dimensional running
variable and x∗ is the common cutoff for all units. For the purpose of exposition, we focus
on sharp RDDs where

Wi = I(Xi ≥ x∗). (27)

The extensions to fuzzy RDDs is straightforward yet mathematically involved. Denote by
(Yi(1), Yi(0)) the potential outcomes. Following Imbens and Lemieux [2008], we make the
continuity assumption.
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Assumption 5.5. (Continuity of conditional distribution function) for w ∈ {0, 1}, FY (w)|X=x

weakly converges to FY (w)|X=x∗ as x → x∗

As Imbens and Lemieux [2008] noted, for level outcomes, the continuity assumption is
stronger than required for identification but practically indistinguishable with the weakest
possible assumption in most cases. In addition, when the outcomes are ranked, we need this
stronger continuity assumption.

While there are many commonly-used RDD estimators for level outcomes [e.g. Imbens
and Lemieux, 2008, Lee and Lemieux, 2010, Calonico et al., 2014, Imbens and Wager, 2019,
Eckles et al., 2020, Cattaneo and Titiunik, 2022], we focus on the simplest kernel estimator

β̂RDD =

∑
i:Xi≥x∗

RY
i

n K
(

Xi−x∗

hn

)
∑

i:Xi≥x∗ K
(

Xi−x∗

hn

) −

∑
i:Xi<x∗

RY
i

n K
(

Xi−x∗

hn

)
∑

i:Xi<x∗ K
(

Xi−x∗

hn

) . (28)

Further, let β̂RDD,1 and β̂RDD,0 denote the same estimator but with RY
i /n replaced by RY

i,1/n1

and RY
i,0/n0, respectively. Here we make the following standard assumptions on the density

of X and the kernel.

Assumption 5.6. (a) X has a Lipschitz continuous density p (with respect to the Lebesgue
measure) with x∗ in the interior of the support and p(x∗) ∈ (0,∞).

(b) K has a bounded support with∫
K2(u)du < ∞,

∫ ∞

0

K(u)du ·
∫ 0

−∞
K(u)du ̸= 0.

The following result shows that the kernel RDD estimator does not satisfy the reference
robustness and none of these estimators converge to the rank-ATE at cutoff x∗:

τr(FY (1)|x∗ , FY (0)|x∗), (29)

where FY (w)|x denotes the conditional distribution of Y (w) given X = x.

Theorem 5.6. Assume that hn → 0 and nhn → ∞. Under Assumptions 3.1, 3.2 and 5.5,
as n → ∞,

β̂RDD

p→ τr(FY (1)|x∗ , FY )− τr(FY (0)|x∗ , FY ),

β̂RDD,1
p→ τr(FY (1)|x∗ , FY |W=1)− τr(FY (0)|x∗ , FY |W=1),

β̂RDD,0
p→ τr(FY (1)|x∗ , FY |W=0)− τr(FY (0)|x∗ , FY |W=0),

Since we only focus on identification, our results would continue to hold for local-
polynomial estimators [e.g. Imbens and Lemieux, 2008, Calonico et al., 2014] using the
standard asymptotic theory of local-polynomial estimation [Fan and Gijbels, 1992].

Intuitively, to identify rank-ATE at the cutoff, we need to rank based on units near the
cutoff. This motivates the following kernel U-statistic:

β̂mRDD =

∑
i:Xi≥x∗

∑
j:Xj<x∗ K

(
Xi−x∗

hn

)
K
(

Xj−x∗

hn

)
I(Yj ≤ Yi)∑

i:Xi≥x∗
∑

j:Xj<x∗ K
(

Xi−x∗

hn

)
K
(

Xj−x∗

hn

) (30)
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Note that (30) is equivalent to (28) with RY
i /n replaced by a weighted rank∑

j:Xj<x∗ K
(

Xj−x∗

hn

)
I(Yj ≤ Yi)∑

j:Xj<x∗ K
(

Xj−x∗

hn

) .

Theorem 5.7. Assume that hn → 0 and nhn → ∞. Under Assumptions 3.1, 3.2 and 5.5,
as n → ∞,

β̂mRDD

p→ τr(FY (1)|x∗ , FY (0)|x∗).

6 Summary and discussions

In this paper, we study the effective estimands and causal interpretations of popular econo-
metric methods with ranked outcomes or treatments. We introduce the rank-ATE as a
primitive causal parameter that enjoys many desirable properties and serves as the building
block for all estimands studied in this paper. It also allows us to generalize the estimands
for 2SLS, DiD, and RDD to the setting with ranks, though we show that they are not
identified by directly applying these methods to ranked outcomes due to the nonlinearity
of rank-ATE. We develop alternative identification strategies based on different reference
distribution for ranking.

6.1 An alternative primitive estimand

While the rank-ATE is a measure of the comparison between the distributions of treated and
control potential outcomes, it cannot be written as an average of individual-level treatment
effects, i.e., E[g(Y (1), Y (0))] [Chen and Roth, 2023]. An analogue of rank-ATE is

τ∗r (FY (1), FY (0)) = P(Y (1) ≥ Y (0))− 1

2
= E

[
I(Y (1) ≥ Y (0))− 1

2

]
. (31)

It is not hard to find data generating distributions under which τr(FY (1), FY (0)) and τ∗r (FY (1), FY (0))
have different signs. This is also referred to as the Hand’s paradox in biostatistics [e.g. Fay
et al., 2018].

Apparently, τ∗r (FY (1), FY (0)) is only partially identifiable without further assumptions.
Fan and Park [2010] derive the tight lower and upper bounds on τ∗:

τ∗L(FY (1), FY (0)) = max

{
sup
y
(FY (0)(y)− FY (1)(y)), 0

}
− 1

2
,

and

τ∗R(FY (1), FY (0)) = min

{
inf
y
(FY (0)(y)− FY (1)(y)), 0

}
+

1

2
.

With covariates, the bounds can be sharpened [Lee, 2021].
However, to consistently estimate and quantify uncertainty of the sharper bounds, Lee

[2021] requires a correct model for the conditional distributions of potential outcomes given
the covariates X, which is arguably too strong when X is continuous, mixed-type, high-
dimensional, or unstructured (e.g., texts). Ji et al. [2023] overcomes this issue by exploiting
Kantorovich duality in optimal transport theory. In particular, our method can wrap around
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any estimates of P(Y (1) | X) and P(Y (0) | X) and generate valid lower and upper bounds
for τ∗ even if the estimates are completely off. In the meantime, our bounds are efficient if
the estimates of conditional distributions are consistent with the semiparametric rates (i.e.,
O(n−1/4)).
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A Proofs

A.1 Proofs for OLS

Proof of Theorem 3.1. It is easy to see that the estimator is equivalent to the difference-
in-means estimator:

β̂nox =
1

n1

∑
i:Wi=1

RY
i

n
− 1

n0

∑
i:Wi=0

RY
i

n
. (32)

By (3),

β̂nox = β̂∗
nox +OP(1/

√
n) where β̂∗

nox =
1

n1

∑
i:Wi=1

FY (Yi)−
1

n0

∑
i:Wi=0

FY (Yi).

We can rewrite β̂∗
nox as

β̂∗
nox =

1

n

n∑
i=1

(
FY (Yi)Wi

n1/n
− FY (Yi)(1−Wi)

n0/n

)
.
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Note that n1/n
p→ π and n0/n

p→ 1− π. By Law of Large Number,

β̂∗
nox

p→ E[FY (Y )W ]

π
− E[FY (Y )(1−W )]

1− π
=

E[FY (Y (1))W ]

π
− E[FY (Y (0))(1−W )]

1− π
. (33)

where the last step invokes SUTVA. Under Assumption 3.3,

E[FY (Y (1))W ] = πE[FY (Y (1))], E[FY (Y (0))(1−W )] = (1− π)E[FY (Y (0))].

Thus,

β̂∗
nox

p→ E[FY (Y (1))]− E[FY (Y (0))].

By (8),

E[FY (Y (1))] = πE[FY (1)(Y (1))]+(1−π)E[FY (0)(Y (1))] =
π

2
+(1−π)

∫
FY (0)(y)dFY (1)(y),

where the last step uses the fact that FY (1)(Y (1)) ∼ Unif([0, 1]) when FY (1) is continuous.
Similarly,

E[FY (Y (0))] =
1− π

2
+ π

∫
FY (1)(y)dFY (0)(y).

Using integration by part, we have∫
FY (1)(y)dFY (0)(y) = 1−

∫
FY (0)(y)dFY (1)(y).

By (5),
E[FY (Y (1))]− E[FY (Y (0))] = τr(FY (1), FY (0)).

Proof of Theorem 3.2. Similar to (32), we have

β̂nox,1 =
1

n1

∑
i

Wi

RY
i,1

n
− 1

n0

∑
i

(1−Wi)
RY

i,1

n
,

and

β̂nox,0 =
1

n0

∑
i

Wi

RY
i,0

n
− 1

n0

∑
i

(1−Wi)
RY

i,0

n
.

By definition of RY
i,1, we can rewrite it as

β̂nox,1 =
1

n2
1

∑
i,j

WiWjI(Yj ≤ Yi)−
1

n1n0

∑
i,j

(1−Wi)WjI(Yj ≤ Yi).

Similarly,

β̂nox,0 =
1

n1n0

∑
i,j

(1−Wi)WjI(Yj ≤ Yi)−
1

n2
0

∑
i,j

(1−Wi)(1−Wj)I(Yj ≤ Yi).
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In the absence of ties, I(Yj ≤ Yi) + I(Yi ≤ Yj) = 1 for any i ̸= j. Swapping the labels i and
j,

1

n2
1

∑
i,j

WiWjI(Yj ≤ Yi) =
1

2n2
1

∑
i ̸=j

WiWj +
1

n2
1

∑
i

Wi

=
1

2n2
1


(∑

i

Wi

)2

−
∑
i

W 2
i

+
1

n2
1

∑
i

Wi =
1

2n2
1

(n2
1 − n1) +

1

n1
=

1

2
+

1

2n1
.

Similarly,
1

n2
0

∑
i,j

(1−Wi)(1−Wj)I(Yj ≤ Yi) =
1

2
+

1

2n0
.

In addition,

1

n1n0

∑
i,j

(1−Wi)WjI(Yj ≤ Yi) +
1

n1n0

∑
i,j

(1−Wi)WjI(Yj ≤ Yi)

=
1

n1n0

∑
i,j

(1−Wi)WjI(Yj ≤ Yi) +
1

n1n0

∑
i,j

(1−Wj)WiI(Yi ≤ Yj) =
1

n1n0

∑
i,j

(1−Wi)Wj = 1.

Let

β̃ =
1

n0

∑
i

(1−Wi)
RY

i,0

n
.

Then β̂nox,1 and β̂nox,0 can be rewritten as

β̂nox,1 =
1

2
− β̃ +

1

2n1
, β̂nox,1 =

1

2
− β̃ − 1

2n0
.

Noting that
RY

i

n
=

n1

n

RY
i,1

n1
+

n0

n

RY
i,0

n0
,

we have

β̂nox =
n1

n
β̂nox,1 +

n0

n
β̂nox,0 =

1

2
− β̃.

The proof is then completed.

Proof of Theorem 3.3. Under Assumption 3.3,

Cov(W,X) = 0, Cov(W,W (X − E[X])) = E[W (X − E[X])]− E[W ]E[W (X − E[X])] = 0.

The population Frisch-Waugh-Lovell theorem implies that the limits of β̂ and β̂int both
coincide with the limit of β̂nox.

Proof of Theorem 3.4. The population Frisch-Waugh-Lovell theorem and (3) together
imply that

β̂
p→ E[(W − π̃(X))FY (Y )]

E[(W − π̃(X))2]
.
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The numerator can be decomposed into

E[(W − π̃(X))FY (Y (0))] + E[(W − π̃(X))W (FY (Y (1))− FY (Y (0))].

By the law of iterated expectation and Assumption 3.5, the first term can be expressed as

E[(π(X)− π̃(X))E[FY (Y (0)) | X]].

When condition (a) holds, it is clearly zero; when condition (b) holds,

E[(π(X)− π̃(X))E[FY (Y (0)) | X]] = E[(π(X)− π̃(X))X⊤η∗] = 0,

because π̃(X) is the linear projection of π(X) and E[(π(X)− π̃(X))X] = 0. Thus, the first
term is zero under either condition (a) or (b) and the numerator can be simplified into

E[(W − π̃(X))W (FY (Y (1))− FY (Y (0))]

= E[π(X)(1− π̃(X))E[FY (Y (1))− FY (Y (0)) | X]]

= E[w(X)τr(FY (1)|X , FY (0)|X)].

Now we turn to the denominator. Since π̃(X) is the linear projection of π(X),

E[π̃(X)(π(X)− π̃(X))] = 0.

Thus,
E[(W − π̃(X))2] = E[π(X)− 2π(X)π̃(X) + π̃2(X)] = E[w(X)].

The proof is then completed.

Proof of Theorem 4.1. Under Assumption 3.3,

Cov(hn(W ), X) = 0.

By population Frisch-Waugh-Lovell theorem, (3), and Assumption 4.4, we can show that

β̂hn

p→ Cov(FY (Y ), h(W ))

Var[h(W )]
. (34)

By Assumption 4.2, FY is continuous. Thus, E[FY (Y )] = 1/2 and

Cov(FY (Y ), h(W )) = E
[{

FY (Y )− 1

2

}
h(W )

]
=

∫ {
FY (Y )− 1

2

}
h(w)dFW (w)

=

∫ {
FY (Y (w))− 1

2

}
h(w)dFW (w) (by Assumption 4.1)

=

∫
τr(FY (w), FY )h(w)dFW (w) (by (5))

=

∫
τr(FY (w), FY (w̃))h(w)dFW (w)dFW (w̃) (by linearity)

=

∫
w ̸=w̃

τr(FY (w), FY (w̃))h(w)dFW (w)dFW (w̃) (by Assumption 4.2 and anti-symmetry)

=

∫
w>w̃

τr(FY (w), FY (w̃))(h(w)− h(w̃))dFW (w)dFW (w̃) (by Assumption 4.2 and anti-symmetry)

= E
[
b(W, W̃ )τr

(
FY (W ), FY (W̃ )

)]
.
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The proof is completed by applying the well-known variance formula Var[X] = (1/2)E[(X−
X ′)2] = E[(X −X ′)2I(X > X ′)] with X = h(W ).

A.2 Proofs for 2SLS

Proof of Theorem 5.1. Let m1 and m0 denote the number of units with Zi = 1 and
Zi = 0, respectively. The 2SLS estimator can be expressed as

β̂2SLS =
1

m1

∑
i:Zi=1

RY
i

n − 1
m0

∑
i:Zi=0

RY
i

n
1

m1

∑
i:Zi=1 Wi − 1

m0

∑
i:Zi=0 Wi

.

By Assumption 5.1 (d),

1

m1

∑
i:Zi=1

Wi −
1

m0

∑
i:Zi=0

Wi
p→ P(W = 1 | Z = 1)− P(W = 1 | Z = 0) > 0.

By (3),

1

m1

∑
i:Zi=1

RY
i

n
− 1

m0

∑
i:Zi=0

RY
i

n

=
1

m1

∑
i:Zi=1

FY (Yi)−
1

m0

∑
i:Zi=0

FY (Yi) + oP(1).

Thus,
β̂2SLS = β̂∗

2SLS + oP(1),

where β̂∗
2SLS is the 2SLS estimator with FY (Yi)s being outcomes. The standard theory of

2SLS [Imbens and Angrist, 1994] implies that

β̂∗
2SLS

p→ E[FY (Y (1))− FY (Y (0)) | G = c].

By (5),
E[FY (Y (1)) | G = c] = τr(FY (1)|c, FY ),

and
E[FY (Y (0)) | G = c] = τr(FY (0)|c, FY ).

The proof for β̂2SLS is then completed. The limits of other estimators can be proved similarly.

Proof of Theorem 5.2. Following the same steps in the proof of Theorem 5.1, we can
show that

β̂2SLS,ζ,c
p→ τr(FY (1)|c, ζF̂Y (1)|c + (1− ζ)F̂Y (0)|c)− τr(FY (1)|c, ζF̂Y (1)|c + (1− ζ)F̂Y (0)|c).

By reference robustness, the RHS equals the rank-LATE.
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Proof of Theorem 5.3. By Assumptions 3.1 and 5.1,

F11(y) = P(Y (1) ≤ y | W (1) = 1, Z = 1)

= P(Y (1) ≤ y | W (1) = 1)

= P(Y (1) ≤ y | G ∈ {a, c})
= P(G = a | G ∈ {a, c})FY (1)|a(y) + P(G = c | G ∈ {a, c})FY (1)|c(y)

=
πa

πa + πc
FY (1)|a(y) +

πc
πa + πc

FY (1)|c(y),

and

F10(y) = P(Y (1) ≤ y | W (0) = 1, Z = 0)

= P(Y (1) ≤ y | W (0) = 1)

= P(Y (1) ≤ y | G = a)

= FY (1)|a(y).

As a result,

FY (1)|c =
πa + πc

πc

(
F11 −

πa
πa + πc

F10

)
. (35)

Similarly,

FY (0)|c =
πn + πc

πc

(
F00 −

πn
πn + πc

F01

)
. (36)

A.3 Proofs for DiD

Proof of Theorem 5.4. By (3) and SUTVA,

β̂DiD

p→ E[FY1
(Y1) | W = 1]− E[FY1

(Y1) | W = 0]− (E[FY0
(Y0) | W = 1]− E[FY0

(Y0) | W = 0])
(37)

Since FY1
= πFY1|W=1 + (1− π)FY1|W=0 and FY0

= πFY0|W=1 + (1− π)FY0|W=0, by partial
additivity and (5),

E[FY1
(Y1) | W = 1]− E[FY1

(Y1) | W = 0] = τr(FY1|W=1, FY1
)− τr(FY1|W=0, FY1

)

= τr(FY1|W=1, FY1|W=0), (38)

and

E[FY0
(Y0) | W = 1]− E[FY0

(Y0) | W = 0] = τr(FY0|W=1, FY0
)− τr(FY0|W=0, FY0

)

= τr(FY0|W=1, FY0|W=0). (39)

By Assumption 5.4,

τr(FY0|W=1, FY0|W=0) = τr(FY0(0)|W=1, FY0(0)|W=0) = τr(FY1(0)|W=1, FY1(0)|W=0)

Combining above pieces, we have

β̂DiD

p→ τr(FY1|W=1, FY1|W=0)− τr(FY1(0)|W=1, FY1(0)|W=0)

= τr(FY1(1)|W=1, FY1(0)|W=0)− τr(FY1(0)|W=1, FY1(0)|W=0).

Finally, using other ranks would not change (38) or (39) due to partial additivity.
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Proof of Theorem 5.5. Similar to (37) in the proof of Theorem 5.4,

β̂mDiD

p→ E[FY1(0)|W=1(Y1) | W = 1]− E[FY1(0)|W=1(Y1) | W = 0]

− (E[FY0
(Y0) | W = 1]− E[FY0

(Y0) | W = 0])

= β∗
DiD +

(
1

2
− E[FY1(0)|W=1(Y1(0)) | W = 0]

)
− (E[FY0(0)(Y0) | W = 1]− E[FY0(0)(Y0) | W = 0])

= β∗
DiD + τr(FY1(0)|W=1, FY1(0)|W=0)− τr(FY0(0)|W=1, FY0(0)|W=0)

= β∗
DiD,

where the last step is due to Assumption 5.4.

A.4 Proofs for RDD

We start by proving a lemma.

Lemma A.1. In the setting of Theorem 5.6, for any bounded random variable Zi such that
E[Z | X = x] is continuous at x = x∗, as n → ∞,

1

n

∑
i:Xi≥x∗

Zi ·
1

hn
K

(
Xi − x∗

hn

)
= E[Z | X = x∗] · p(x∗)

∫ ∞

0

K(u)du+ oP(1),

and

1

n

∑
i:Xi<x∗

Zi ·
1

hn
K

(
Xi − x∗

hn

)
= E[Z | X = x∗] · p(x∗)

∫ 0

−∞
K(u)du+ oP(1).

Proof. Without loss of generality, assume K is supported on [−1, 1] and bounded by B and
p is L-Lipschitz. Note that

E
[
ZI(X ≥ x∗) · 1

hn
K

(
X − x∗

hn

)]
= E

[
ZI(X ∈ [x∗, x∗ + hn]) ·

1

hn
K

(
X − x∗

hn

)]
= E

[
E[Z | X]I(X ∈ [x∗, x∗ + hn]) ·

1

hn
K

(
X − x∗

hn

)]
= E[Z | X = x∗] · E

[
I(X ∈ [x∗, x∗ + hn]) ·

1

hn
K

(
X − x∗

hn

)]
+ E

[
(E[Z | X]− E[Z | X = x∗]) I(X ∈ [x∗, x∗ + hn]) ·

1

hn
K

(
X − x∗

hn

)]
Since E[Z | X = x] is continuous at x = x∗ and hn → 0, for any ϵ > 0, there exists a
sufficiently large n(ϵ) such that, for any n ≥ n(ϵ), |E[Z | X]− E[Z | X = x∗]| ≤ ϵ. Thus,

E
[
ZI(X ≥ x∗) · 1

hn
K

(
X − x∗

hn

)]
= (E[Z | X = x∗] + o(1)) · E

[
I(X ∈ [x∗, x∗ + hn]) ·

1

hn
K

(
X − x∗

hn

)]
.
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Since X is supported on [−1, 1],

E
[
I(X ∈ [x∗, x∗ + hn]) ·

1

hn
K

(
X − x∗

hn

)]
=

∫ 1

0

K(u)p(x∗ + hnu)du.

By Cauchy-Schwarz inequality,∫ 1

−1

u|K(u)|du ≤

√∫ 1

−1

u2du

∫ 1

−1

K2(u)du < ∞.

Since p is L-Lipschitz,∣∣∣∣∣
∫ 1

0

K(u)(p(x∗ + hnu)− p(x∗))du

∣∣∣∣∣ ≤ Lhn

∫ 1

0

u|K(u)|du = O(hn) = o(1).

Thus,

E
[
ZI(X ≥ x∗) · 1

hn
K

(
X − x∗

hn

)]
= p(x∗)

∫ 1

0

K(u)du+ o(1).

Since E[Z | X = x∗] and p(x∗) are bounded, we have

E
[
ZI(X ≥ x∗) · 1

hn
K

(
X − x∗

hn

)]
= E[Z | X = x∗] · p(x∗)

∫ 1

0

K(u)du+ o(1). (40)

Now we compute the variance. Assume |Z| ≤ C. Then,

Var

[
ZI(X ≥ x∗) · 1

hn
K

(
X − x∗

hn

)]
≤ E

[
Z2I(X ∈ [x∗, x∗ + hn]) ·

1

h2
n

K2

(
X − x∗

hn

)]
≤ C2 1

hn

∫ 1

0

K2(u)p(x∗ + hnu)du.

Since p is L-Lipschitz,∣∣∣∣∣
∫ 1

0

K2(u)p(x∗ + hnu)du−
∫ 1

0

K2(u)p(x∗)du

∣∣∣∣∣ ≤ Lhn

∫ 1

0

uK2(u)du = O(hn).

Thus,

Var

[
ZI(X ≥ x∗) · 1

hn
K

(
X − x∗

hn

)]
≤ C2

(
p(x∗)

hn

∫ 1

0

K2(u)du+O(1)

)
= O

(
1

hn

)
.

(41)

Combining (40) and (41), by Chebyshev’s inequality, we obtain that

1

n

∑
i:Xi≥x∗

Zi ·
1

hn
K

(
Xi − x∗

hn

)
= E[Z | X = x∗] · p(x∗)

∫ 1

0

K(u)du+ oP(1) +OP

(
1√
nhn

)
.

Since nhn → ∞, the last terms collapse to oP(1). The integral range can be replaced by
[0,∞) because K is supported on [−1, 1]. The proof for the other result is similar.

26



Proof of Theorem 5.6. Without loss of generality, assume K is supported on [−1, 1] and
bounded by B. Let

D≥ =
1

n

∑
i:Xi≥x∗

1

hn
K

(
Xi − x∗

hn

)
, D< =

1

n

∑
i:Xi<x∗

1

hn
K

(
Xi − x∗

hn

)
.

By Lemma A.1 with Z = 1,

D≥ = p(x∗)

∫ 1

0

K(u)du+ oP(1), D< = p(x∗)

∫ 0

−1

K(u)du+ oP(1). (42)

Define the terms in the numerator as

N≥ =
1

n

∑
i:Xi≥x∗

RY
i

n
· 1

hn
K

(
Xi − x∗

hn

)
, N< =

1

n

∑
i:Xi<x∗

RY
i

n
· 1

hn
K

(
Xi − x∗

hn

)
.

By (3),

N≥ = N∗
≥ +OP

(
1√
n

)
, N< = N∗

< +OP

(
1√
n

)
(43)

where

N∗
≥ =

1

n

∑
i:Xi≥x∗

FY (Yi) ·
1

hn
K

(
Xi − x∗

hn

)
, N∗

< =
1

n

∑
i:Xi<x∗

FY (Yi) ·
1

hn
K

(
Xi − x∗

hn

)
.

By the SUTVA assumption (Assumption 3.1) and the sharp RDD assumption,

FY |X=x = I(x ≥ x∗) · FY (1)|X=x + I(x < x∗) · FY (0)|X=x.

By Assumption 5.5,

FY |X=x
d→ FY (0)|X=x∗ , as x ↑ x∗,

and
FY |X=x

d→ FY (1)|X=x∗ , as x ↓ x∗.

Since FY is bounded, weak convergences and (5) imply

lim
x↑x∗

E[FY (Y ) | X = x] = τr(FY (0)|X=x∗ , FY ).

Similarly,

lim
x↓x∗

E[FY (Y ) | X = x] = τr(FY (1)|X=x∗ , FY ).

By Lemma A.1 with Z = FY (Y ),

N∗
≥ = τr(FY (1)|X=x∗ , FY ) · p(x∗)

∫ 1

0

K(u)du+ oP(1),

and

N∗
< = τr(FY (0)|X=x∗ , FY ) · p(x∗)

∫ 0

−1

K(u)du+ oP(1).
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By (43),

N≥ = τr(FY (1)|X=x∗ , FY ) · p(x∗)

∫ 1

0

K(u)du+ oP(1),

and

N< = τr(FY (0)|X=x∗ , FY ) · p(x∗)

∫ 0

−1

K(u)du+ oP(1).

Thus,

β̂RDD =
N≥

D≥
− N<

D<

p→ τr(FY (1)|X=x∗ , FY )− τr(FY (0)|X=x∗ , FY ).

The limits for other ranking methods can be derived similarly.

Proof of Theorem 5.7. Similar to the proof of Theorem 5.6, we assume K is supported
on [−1, 1]. Let

D =
1

n2

∑
i:Xi≥x∗

∑
j:Xj<x∗

1

hn
K

(
Xi − x∗

hn

)
1

hn
K

(
Xj − x∗

hn

)
,

and

N =
1

n2

∑
i:Xi≥x∗

∑
j:Xj<x∗

1

hn
K

(
Xi − x∗

hn

)
1

hn
K

(
Xj − x∗

hn

)
I(Yj ≤ Yi).

By Lemma A.1,

D =

 ∑
i:Xi≥x∗

1

nhn
K

(
Xi − x∗

hn

) ∑
j:Xj<x∗

1

nhn
K

(
Xj − x∗

hn

)
= p2(x∗)

(∫ 1

0

K(u)du

)(∫ 0

−1

K(u)du

)
+ oP(1)

It is left to prove

N = p2(x∗)

(∫ 1

0

K(u)du

)(∫ 0

−1

K(u)du

)
· τr(FY (1)|x∗ , FY (0)|x∗) + oP(1). (44)

We rewrite N as a U-statistic:

N =
1

n2

∑
i ̸=j

1

hn
K

(
Xi − x∗

hn

)
I(Xi ≥ x∗) · 1

hn
K

(
Xj − x∗

hn

)
I(Xj < x∗) · I(Yj ≤ Yi).
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First we compute the mean of N . Since (Xi, Yi) are i.i.d.,

E
[

n

n− 1
N

]
= E

[
1

hn
K

(
Xi − x∗

hn

)
I(Xi ≥ x∗) · 1

hn
K

(
Xj − x∗

hn

)
I(Xj < x∗) · I(Yj ≤ Yi)

]
= E

[
1

hn
K

(
Xi − x∗

hn

)
I(Xi ≥ x∗) · 1

hn
K

(
Xj − x∗

hn

)
I(Xj < x∗) · P(Yj ≤ Yi | Xj , Xi)

]
= E

[
1

hn
K

(
Xi − x∗

hn

)
I(Xi ≥ x∗) · 1

hn
K

(
Xj − x∗

hn

)
I(Xj < x∗) · P(Yj(0) ≤ Yi(1) | Xj , Xi)

]
= E

[
1

hn
K

(
Xi − x∗

hn

)
I(Xi ∈ [x∗, x∗ + hn]) ·

1

hn
K

(
Xj − x∗

hn

)
I(Xj ∈ [x∗ − hn, x

∗))

· P(Yj(0) ≤ Yi(1) | Xj , Xi)

]
.

Since Xi, Xj → x∗ as n → ∞, by Assumption 5.5, (Yj , Yi) | (Xj , Xi) weakly converges to
(Yj , Yi) | Xj = Xi = x∗. Thus, for any ϵ > 0, there exists n(ϵ) > 0 such that for any
n > n(ϵ), ∣∣∣∣P(Yj(0) ≤ Yi(1) | Xj , Xi)− P(Yj(0) ≤ Yi(1) | Xj = Xi = x∗)

∣∣∣∣ ≤ ϵ.

By definition,

P(Yj(0) ≤ Yi(1) | Xj = Xi = x∗) = τr(FY (1)|x∗ , FY (0)|x∗).

Following the same steps as in Lemma A.1,

E

[
1

hn
K

(
Xi − x∗

hn

)
I(Xi ∈ [x∗, x∗ + hn]) ·

1

hn
K

(
Xj − x∗

hn

)
I(Xj ∈ [x∗ − hn, x

∗))

]

= E

[
1

hn
K

(
Xi − x∗

hn

)
I(Xi ∈ [x∗, x∗ + hn])

]
· E

[
1

hn
K

(
Xj − x∗

hn

)
I(Xj ∈ [x∗ − hn, x

∗))

]

= p2(x∗)

(∫ 1

0

K(u)du

)(∫ 0

−1

K(u)du

)
+ oP(1).

Thus, we have proved that

E
[

n

n− 1
N

]
= p2(x∗)

(∫ 1

0

K(u)du

)(∫ 0

−1

K(u)du

)
· τr(FY (1)|x∗ , FY (0)|x∗) + oP(1).

Hence,

E [N ] = p2(x∗)

(∫ 1

0

K(u)du

)(∫ 0

−1

K(u)du

)
· τr(FY (1)|x∗ , FY (0)|x∗) + oP(1).

Next, we bound the variance of N . Let Uij be the summand:

Uij =
1

hn
K

(
Xi − x∗

hn

)
I(Xi ≥ x∗) · 1

hn
K

(
Xj − x∗

hn

)
I(Xj < x∗) · I(Yj ≤ Yi).
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Clearly, Cov(Uij , Ukℓ) = 0 whenever i, j, k, ℓ are mutually distinct. For any i ̸= j,√
E[|Uij |] ≤ E

[
1

hn
K

(
X − x∗

hn

)]
= O(1),

where the last equality follows the same steps in the proof of Lemma A.1, and√
Var(Uij) ≤

√
E[U2

ij ]

≤ E
[
1

h2
n

K2

(
X − x∗

hn

)]
=

1

hn

∫ 1

−1

K2(u)p(x∗ + hnu)du

=
p(x∗)

hn

∫ 1

−1

K2(u)du+O

(
L

∫ 1

−1

|u|K2(u)du

)
= O

(
1

hn

)
,

where the second to last line applies Assumption 5.6. Thus,

E[|Uij |] = O(1), Var(Uij) = O

(
1

h2
n

)
.

For any mutually distinct i, j, k,

E[|Uij | · |Uik|] ≤ E
[
1

h2
n

K2

(
X − x∗

hn

)]
· E2

[
1

hn
K

(
X − x∗

hn

)]
= O

(
1

hn

)
.

As a result,

|Cov(Uij , Uik)| ≤ E[|Uij | · |Uik|] + E2[Uij ] = O

(
1

hn
+ 1

)
= O

(
1

hn

)
.

Putting pieces together, we obtain that

Var(N) = O

(
1

n2
Var(Uij) +

1

n
|Cov(Uij , Uik)|

)
= O

(
1

(nhn)2
+

1

nhn

)
= o(1).

By Chebyshev inequality,

N = E[N ] +OP(
√
Var(N)) = E[N ] + oP(1).

Thus, (44) is proved.
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