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STAT 210A: Introduction to Mathematical Statistics

Problem Set

Issued: Nov. 18, Wednesday
Due: Dec. 10, Thursday (at beginning of class)

Policy
This is a special homework. There are 5 problems as usual but each of them has 10 sub-
problems. Please select 30 subproblems out of 50. For example, you can work on three
entire problems or 6 subproblems from each. More generally you can allocate them in any
pattern you want and only the total number of subproblems matters.

Do not worry if you get stuck in some problems. You can use the result from the parts
that you do not solve. For example, you can skip Problem 9.1 (a)-(d) and go directly to (e)
assuming the previous parts have been solved. If you find any typo or mistake, feel free to
post it on piazza and we will correct them as soon as possible.

Preview
Hopefully, you have already seen the elegance of theoretical statistics in this course, which
offers you a whirlwind tour in this fantastic world. These problems are designed for you
to understand several most astonishing parts of statistics, which has been covered to some
degree in the second half semester. Here is a short description of the problems.

Problem 1 Most popular estimators in statistics can be obtained by minimizing a convex
function. For example, mean is the minimizer of L2 loss, median is the minimizer
of L1 loss and quantiles are minimizers of a group of piecewise linear functions.
It turns out that there exists a generic way to analyze them and establish the
consistency under weak regularity conditions. Problem 9.1 decompose the fan-
tastic idea, initialized by Pollard in 1990s, into small pieces so that each piece
is doable. You can learn how to apply this technique to prove the consistency
of mean, median, quantiles and even M estimator, LASSO estimator and ridge
estimator. In this problem, we only deal with location estimation problem but it
is easy to extend these ideas to corresponding regression estimators.

Problem 2 This is a continuation of Problem 9.1. After refining the above result a little bit,
the asymptotic distribution of various estimators can be calculated without paying
much more effect. You will see an alternative proof , originated by Pollard and
Knight in 1990s and developed by Koenker in 2000s, of the asymptotic normality
of median and this technique can be easily extended to establish the asymptotic
normality for LAD or quantile regression.
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Problem 3 Bootstrap is a generic methodology to approximate the finite sample behavior
of estimators and is able to deal with complicated statistics whose limiting dis-
tribution is hard to be obtained analytically. The far-reaching paper by Efron
(1979) reveals the intrinsic relationship between Bootstrap and Jacknife, which
is a popular way to estimate the bias and variance of common estimators before.
In this problem, you will compare these two techniques case by case. Usually the
answers can not be obtained analytically, however, these problems are carefully
designed and take advantage of some elegant properties of some distributions so
that the final result can be written explicitly.

Problem 4 One of the most important technical tool in modern statistics is concentration
inequalities and the union bound. you may feel overwhelmed at the first time
you learn sub-Gaussianity, sub-exponentiality and various inequalites. But after
enough exercises you will see how natural and, most importantly, how qualitative
they are even though they look like very mathematical. This problem aims to
establish the bounds for the maximum of random variables. It involves various
techinques in the lectures. After suffering for a while these techniques will become
your kindly friends and accompany you in the rest of your research life.

Problem 5 Random matrix theory, although used to be a tough topic, become increasingly
more important in modern statistics. By using concentration inequalities and
underlying geometry, you can figure out the finite sample behaviors of the random
matrix accurately. In this problem, you will learn the relationship between sub-
Gaussian random variables and sub-exponential random variables by using the
techinques developed by Vershynin and then apply these results to obtain the
bound for largest eigenvalues of sample covariance.

ENJOY THE HOMEWORK AND
HAPPY THANKSGIVNG!
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Problem 9.1
Let λn(θ) be a random convex function of θ ∈ Θ where Θ is an open subset of Rp. Suppose
λ(θ) is a deterministic convex function such that for any given θ,

λn(θ)
d→ λ(θ).

Let K be any compact subset K of Θ.

(a) Show that for any ε > 0,

P

(
sup
θ∈K

λn(θ)− λ(θ) > ε

)
→ 0.

Hint: you may use the following facts: (i) a compact set can be covered by finite number
of p-dimensional cubes; (ii) a convex function is always continuous and hence uniformly
continuous in any compact set.

(b) Show that for any ε > 0,

P

(
inf
θ∈K

λn(θ)− λ(θ) < −ε
)
→ 0.

(c) Conclude from (a) and (b) that

sup
θ∈K
|λn(θ)− λ(θ)| p→ 0.

(d) Assume that λ(θ) has a unique minimizer, denoted by θ0 and let θ̂n be a minimizer of
λn(θ). Show that

θ̂n
p→ θ0.

Hint: you may use the fact that for any convex function f(x) with unique minimizer x∗,

h(δ) , inf
|x−x∗|>δ

(f(x)− f(x∗)) > 0

for any δ > 0. (This is not hard to prove, but you can use this directly.)
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(Cont.) Let X1, . . . , Xn ∈ Rp be i.i.d. random variables, and ρ be a convex function. Consider
the following location estimator

θ̂n = arg min
θ

1

n

n∑
i=1

ρ(Xi − θ).

(e) Use the previous result to show that

θ̂n
p→ arg min

θ
Eρ(X1 − θ)

provided the right-handed side exists and is finite.

(f) Let ρ(x) = ||x||22 =
∑p

i=1 x
2
i , and assume E||X1||22 <∞. Find the limit of θ̂n;

(g) Assume that p = 1, X1 has continuous distribution with E|X1| < ∞ and let ρ(x) = |x|.
Find the limit of θ̂n;

(h) Assume that p = 1, X1 has continuous distribution with E|X1| <∞. Let τ ∈ (0, 1) and
define ρ(x) as the following piecewise linear function

ρ(x) = τxI(x ≥ 0) + (τ − 1)xI(x < 0).

Find the limit of θ̂n;

(Cont.) Now consider a penalized least square estimator

θ̂λn = arg min
θ

1

n

n∑
i=1

||Xi − θ||22 + λG(θ)

where G is a convex function on Rp.

(i) Let G(θ) = ||θ||22, what is the limit of θ̂λn?

(j) Let G(θ) = ||θ||1 ,
∑p

i=1 |θi|, what is the limit of θ̂λn?
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Problem 9.2
In this problem, we will explore the limit distribution of the minimizer of random convex
functions.

(a) (A finer version of problem 9.1(d)) Let λn(θ) and λ̃n(θ) be two sequences of random
convex functions. Assume that λ̃n(θ) has a unique minimizer θ̃n for each n (note that θ̃n
is a random variable) and let θn be a minimizer of λn(θ). Let

∆n(δ) = max
||θ−θ̃n|≤δ

|λn(θ)− λ̃n(θ)|

and
hn(δ) = inf

||θ−θ̃n||>δ
λ̃n(θ)− λ̃n(θ̃n).

Show that
P (||θn − θ̃n|| > δ) ≤ P (2∆n(δ) ≥ hn(δ)) .

Hint: Modify the proof of Problem 9.1(d).

(b) Assume that λn(θ) is convex and can be written as

λn(θ) =
1

2
θTV θ − θTUn + Cn + rn(θ)

where V ∈ Rp is a positive-definite matrix, Un = Op(1), Cn be some random variables only
depending on n and rn(θ) is a random function such that for any given θ, rn(θ) = op(1).
Show that

|θn − V −1Un|
p→ 0,

where θn = arg minθ λn(θ).

Hint: Let λ̃n(θ) = 1
2θ
TV θ − θTUn + Cn and use Problem 9.1(c) and Problem 9.2(a).

(c) Under the settings of (b), assume further that Un
d→ U for some random variable U .

Show that
θn

d→ V −1U.

(Cont.) Let X1, . . . , Xn ∈ Rp be i.i.d. random variables, and ρ be a convex function. Consider
the following location estimator

θ̂n = arg min
θ

1

n

n∑
i=1

ρ(Xi − θ).

Assume that θ0 = arg minθ Eρ(X1−θ) exists and is finite, then from Problem 9.1(e) we know

that θ̂n
p→ θ0.

(d) Suppose p = 1 and ρ has a bounded third derivative, prove that

√
n(θ̂n − θ0)

d→ N

(
0,

Eρ′(X1 − θ0)2(
Eρ′′(X1 − θ0)

)2
)
.
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(e) Let ρ(x) = ||x||22, identify the limiting distribution of
√
n(θ̂n − θ0).

(Cont.) Let p = 1, and ρ(x) = |x|. Then it is easy to show that θ̂n is the sample median.
Now we establish the asymptotic normality for θ̂n using the previous results.

(f) (Knight’s entity) Show that for any u and t,

|u− t| − |u| = −t(I(u > 0)− I(u ≤ 0)) + 2

∫ t

0
(I(u ≤ s)− I(u ≤ 0))ds.

(g) Let θ0 be the median of X1, Yi = Xi − θ0 and

λn(η) =
n∑
i=1

(∣∣Yi − η√
n

∣∣− ∣∣Yi∣∣) .
Show that √

n(θ̂n − θ0) = arg min
η

λn(η).

(h) Using Knight’s entity,

λn(η) = − η√
n

n∑
i=1

(I(Yi > 0)−I(Yi ≤ 0))+2
n∑
i=1

∫ η√
n

0
(I (Yi ≤ s)− I (Yi ≤ 0)) ds , Λ1n+Λ2n.

Assume that X1 has a density at θ0, denoted by f(θ0). Show that Λ1n = ηUn, where

Un
d→ N(0, 1).

(i) Show that
Λ2n = f(θ0)η2 + rn(η)

where rn(η) = op(1) for any given η.

Hint: Calculate EΛ2n and V ar(Λ2n). You can assume the interchangeability of integral
and expectation.

(j) Identify the limiting distribution of θ̂n.
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Problem 9.3
Jacknife and Bootstrap are two popular methods to estimate the bias and the variance of a
statistic. In this problem we will compare them in different situations.

Let θ̂ = θ̂(Fn) be an estimator of θ = θ(F ) where Fn is the empirical distribution of i.i.d.

samples X1, . . . , Xn ∼ F . The bias of θ̂ is defined as Eθ̂−θ. Let θ̂(i) = θ̂(F
(i)
n ) where F

(i)
n is the

empirical distribution of Xj , j 6= i. For example, if θ̂ = 1
n

∑n
i=1Xi, then θ̂(i) = 1

n−1

∑
j 6=iXj .

The Jacknife estimate of bias is defined as

b̂iasjack = (n− 1)(θ̂(·) − θ̂)

where θ̂(·) =
∑n

i=1 θ̂(i)/n. The Jacknife estimate of variance is defined as

v̂arjack =
n− 1

n

n∑
i=1

(θ̂(i) − θ̂(·))
2.

Another definition is based on pseudo observations θ̃i = nθ̂ − (n − 1)θ̂(i). The estimate of
bias is defined by

b̂ias
′
jack = θ̂ − θ̃(·)

where θ̃(·) = 1
n

∑n
i=1 θ̃i and the estimate of variance is defined by

v̂ar′jack =
1

n(n− 1)

n∑
i=1

(θ̃i − θ̃(·))
2.

In the following context, we use biasF (θ) to represent the bias of θ̂, i.e. EF (θ̂)−θ and varF (θ)
to represents the variance of θ̂.

(a) Show that two definitions agree with each other, i.e.

b̂iasjack = b̂ias
′
jack, v̂arjack = v̂ar′jack.

(b) Let θ = EX1 and θ̂ = X̄ = 1
n

∑n
i=1Xi and assume σ2 = V ar(X1) < ∞. Calculate

biasF (θ̂), varF (θ̂), b̂iasjack(θ̂) and v̂arjack(θ̂). Then compute EF b̂iasjack(θ̂) − biasF (θ̂)

and EF v̂arjack(θ̂)− varF (θ̂).

(c) Let θ = V ar(X1) < ∞ and θ̂ = 1
n

∑n
i=1(Xi − X̄)2. Calculate biasF (θ̂) and b̂iasjack(θ̂).

What is the difference between biasF (θ̂) and EF b̂iasjack(θ̂)?

(d) Let X1 ∼ Unif(0, 1), θ = 0 and θ̂ = X(1). Calculate biasF (θ̂) and b̂iasjack(θ̂). Does the

ratio of EF b̂iasjack(θ̂) and biasF (θ̂) converge to 1?

Hint: you may use Homework 7.5 (a).

(e) Under the settings of (d), calculate varF (θ̂) and v̂arjack(θ̂). Does the ratio of EF v̂arjack(θ̂)
and varF (θ̂) converge to 1?

7



(f) Let X1 ∼ exp(1) and n = 2m be an even integer. Denote the median of X1 by θ and
then the sample median θ̂ = (X(m) + X(m+1))/2 where X(m) and X(m+1) are the m-th

largest and (m + 1)-th largest order statistics. Calculate varF (θ̂) and v̂arjack(θ̂). Does

the ratio of EF v̂arjack(θ̂) and varF (θ̂) converge to 1?

Hint: you may use the hint of Homework 3.3 (d).

(Cont.) Similar to Jacknife, we can define bootstrap bias and bootstrap variance. Let θ̂∗ be
the statistic evaluated on a bootstrap sample x∗1, . . . , x

∗
(n). Then the bootstrap bias can be

defined as
b̂iasboot(θ̂) = E(θ̂∗|X1, . . . , Xn)− θ̂,

and the bootstrap variance is defined as

v̂arboot(θ̂) = V ar(θ̂∗|X1, . . . , Xn)

(g) Let θ̂ = X̄. Show that θ̂∗ can be written as a weighted sum with random weight

θ̂∗ =
1

n

n∑
i=1

WiXi,

where (W1, . . . ,Wn) ∼Multi
(
n; 1

n ,
1
n , . . . ,

1
n

)
.

(h) Under the settings of (b), calculate biasF (θ̂), varF (θ̂), b̂iasboot(θ̂) and v̂arboot(θ̂). Then

compute EF b̂iasboot(θ̂)− biasF (θ̂) and EF v̂arboot(θ̂)− varF (θ̂). Compare these results to
part (b).

(i) Under the settings of (c), calculate biasF (θ̂) and b̂iasboot(θ̂). What is the difference

between biasF (θ̂) and EF b̂iasboot(θ̂)? Compare it to part (c).

(j) Under the settings of (d), calculate biasF (θ̂) and b̂iasboot(θ̂). Does the ratio of EF b̂iasboot(θ̂)
and biasF (θ̂) converge to 1? Compare it to part (d).
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Problem 9.4
One of the most important task in modern statistics is to bound the tail probability or
expectation of the maximum. In this problem we will explore the properties of maximum in
different situations.

(a) Let X be a non-negative random variable such that

P (X ≥ t) ≤ c1e
−c2tα

for some c1 > 1, c2 > 0, α ≥ 1 and any t > 0. Show that

EX =

∫ ∞
0

P (X ≥ t)dt ≤
(

log c1

c2

) 1
α
(

1 +
1

α log c1

)
.

Hint: you may separate the integral region into two parts
∫ t∗

0 and
∫∞
t∗

where c1e
−c2tα∗ = 1.

(b) Let X1, . . . , Xn be n mean-zero σ-sub-Gaussian random variables, i.e.

EeλXi ≤ e
λ2σ2

2 , ∀λ ∈ R.

Use part (a) to give a bound for Emaxi |Xi|.

(c) Let ψ : R → R+ be a convex functionand strictly increasing on R+. Let X1, . . . , Xn are
n random variables. Show that

Emax
i
Xi ≤ inf

λ>0

1

λ
ψ−1

(
n∑
i=1

Eψ(λXi)

)
.

Hint: use Jensen’s inequality.

(d) Let X1, . . . , Xn be n mean-zero σ-sub-Gaussian random variables. Show that

Emax
i
Xi ≤

√
2σ2 log n, Emax

i
|Xi| ≤

√
2σ2 log 2n.

Compare it to the result in part (b).

Hint: use part (c) and let ψ(x) = ex.

(e) Let X1, . . . , Xn be n mean-zero (σ, b)-sub-exponential random variables, i.e.

EeλXi ≤ e
λ2σ2

2 , ∀|λ| < 1

b

Show that

Emax
i
Xi ≤ b log n+

σ2

2b
, Emax

i
|Xi| ≤ b log 2n+

σ2

2b

(f) Let X1, . . . , Xn be n random variables such that (E|Xi|q)
1
q ≤ M for some q ≥ 1. Show

that
Emax

i
|Xi| ≤Mn

1
q .

Hint: use part (c) and let ψ(x) = xq.
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(g) Let X1, . . . , Xn
i.i.d.∼ N(0, 1). From part (d), we already know that

Emax
i
|Xi| ≤

√
2 log(2n).

Show that

lim
n→∞

Emaxi |Xi|√
2 log 2n

= 1.

Hint: you may use the following inequality(
1

z
− 1

z3

)
e−

z2

2 ≤
∫ ∞
z

e−
x2

2 dx ≤ 1

z
e−

z2

2 .

This is not hard to prove but you can use it directly without proof.

(h) LetX1, . . . , Xn be independent σ-sub-Gaussian random variables. DenoteX = (X1, . . . , Xn),
then

||X||2 ,
√
X2

1 + . . .+X2
n = sup

α∈Sn−1

αTX

where Sn−1 is the n-dimensional unit sphere, i.e.

Sn−1 = {α ∈ Rn : ||α||2 = 1}.

Let T be a finite subset of Sn−1 such that for any α ∈ Sn−1, there exists α̃ ∈ T such that
||α− α̃||2 ≤ 1

2 . Show that

||X||2 ≤ 2 max
α∈T

αTX.

(i) Suppose we know that there exists a subset T satisfying the above condition and |T | ≤ 5n,
show that

E||X||2 ≤ 4σ
√
n.

Hint: use part (d).

(j) Can you show that there exists a subset T (ε) ⊂ Sn−1 such that for any α ∈ Sn−1 there
exists α̃ ∈ T (ε) such that ||α− α̃|| < ε and

|T (ε)| ≤ c(ε)n

for some function c(ε)? (e.g. c = 1 + 2/ε.)
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Problem 9.5
For given random variable X, the sub-Gaussian norm ||X||ψ2 is defined as

||X||ψ2 = sup
p
p−

1
2 (E|X|p)

1
p ,

and the sub-exponential norm ||X||ψ1 is defined as

||X||ψ1 = sup
p
p−1 (E|X|p)

1
p ,

where the supremum is taken over all positive integers p.

(a) Show that if X is mean zero and σ-sub-Gaussian, then ||X||ψ2 ≤ c1σ for some universal
constant c1.

(b) Show that if ||X||ψ2 <∞, then X is c2||X||ψ2-sub-Gaussian.

Hint: use Taylor expansion.

(c) Show that if X is mean zero and (σ, b)-sub-exponential, then ||X||ψ1 ≤ c3 max{σ, b} for
some universal constant c3.

(d) Show that if ||X||ψ1 < ∞, then X is (c4||X||ψ1 , c4||X||ψ1)-sub-exponential for some uni-
versal constant c4.

Hint: use Taylor expansion.

(e) Show that
||X||2ψ2

≤ ||X2||ψ1 ≤ 2||X||2ψ2
.

Conclude that if X is σ-sub-Gaussian, then X2 is (c5σ
2, c5σ

2)-sub-exponential for some
universal constant c5.

(f) LetX1, . . . , Xn be independent sub-exponential random variables with parameters (σi, bi).
Show that

∑n
i=1Xi is sub-exponential with parameters

(σ∗, b∗) =

√√√√ n∑
i=1

σ2
i ,max

i
bi

 .

(Cont.) A random vector Z ∈ Rp is called σ-sub-Gaussian if for any α ∈ Sp−1, αTZ is σ-
sub-Gaussian. Let x1, . . . , xn ∈ Rp be i.i.d. zero-mean σ-sub-Gaussian random vectors with
covariance matrix Ex1x

T
1 = Σ. The sample covariance matrix is defined as

Σ̂ =
1

n

n∑
i=1

xix
T
i .
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(g) For given α ∈ Sp−1, show that EαT Σ̂α = αTΣα and αT Σ̂α is (c6σ
2/
√
n, c6σ

2/n)-sub-
exponential for some universal constant c6, i.e.

Eeλ(αT Σ̂α−αTΣα) ≤ e
λ2(c6σ

2)2

2n , ∀|λ| < n

c6σ2
.

Hint: you may use part (e), part (f) as well as the properties of sum of independent
sub-exponential random variables in the textbook

(h) Recall that the maximum eigenvalue of a symmetric matrix S (or the operator norm of
S) can be expressed as

||S||op = λmax(S) = sup
α∈Rp−1

|αTSα|.

Let ε < 1
3 and T (ε) be the set defined in Problem 9.4 (j) (with dimension n replaced by

p), show that

||Σ̂− Σ||op ≤
1

1− 3ε
max
α∈T (ε)

∣∣∣∣αT Σ̂α− αTΣα

∣∣∣∣.
(i) Show that

E||Σ̂− Σ||op ≤
c7pσ

2

n
+ c8σ

2,

for some universal constants c7 and c8.

Hint: you may use problem 9.4 (e), problem 9.4 (j) and problem 9.5 (g).

(j) Show that for some universal constant c9,

Eeλ||Σ̂−Σ||op ≤ e
λ2(c6σ

2)2

n
+c9p, ∀|λ| < n

c6σ2
.
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