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1 Problem setup

Assume (X1, Y1), . . . , (Xn, Yn) are i.i.d. random vectors taking values in X × Y where
Y ⊂ R. Let (X,Y ) denote a generic random vector drawn from the same distribution and
f(x) = E[Y | X = x] denote the conditional expectation and

fmin = inf
x∈X

f(x), fmax = sup
x∈X

f(x)

denote the infimum and supremum of f(x). By symmetry, we only focus on making infer-

ential claims on fmin. The goal of this note is to obtain an upper confidence bound f̂min on
fmin such that

P(fmin ≤ f̂min) ≥ 1− α. (1)

where α is the target Type-I error. In particular, we want the guarantee (1) to hold in finite
samples without any assumption on f(x), in which case no consistent estimate of f(x) is
guaranteed to exist. Moreever, we want the method to be able to wrap around any estimator
of f(x) so that one can apply flexible machine learning algorithms without worrying about
potential failure modes. It is not hard to see that no nontrivial lower confidence bound
on fmin exists without assumptions on f since a perturbation of f(x) in a tiny region can
change fmin substantially while has little effect on the observed values.

2 Preliminaries

2.1 Covariate standardization

As in Lei et al. [2021], we first split the data into two folds and compute an estimate of

the conditional expectation f̂(·) on the first fold of data using an arbitrary method. With
a slight abuse of notation, we let the second fold of data be (X1, Y1), . . . , (Xn, Yn). The
following result shows that transforming Xi never reduces fmin.

Proposition 1. For any estimate f̂ that is independent of (Xi, Yi)
n
i=1,

fmin ≤ E[Y | f̂(X)], almost surely.

∗The author would like to thank Jesse Shapiro for the discussion that motivates this note.
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Let Zi = f̂(Xi). Then we are left to find an upper confidence bound for gmin ≜
infz∈R g(z) where

g(z) = E[Y | Z = z].

Throughout the rest of the note, we will construct upper confidence bounds on gmin.

2.2 Inverting hypothesis tests

When Y is binary, the classification-error (CE) O-value in Lei et al. [2021] only works for
infx min{f(x), 1− f(x)} and does not directly apply to infx f(x). For the latter estimand,
we will take a somewhat different strategy by exploiting the duality between confidence
intervals and hypothesis testing. Specifically, for any c ∈ R, consider the null hypothesis
H0(c) : gmin ≥ c. Suppose that, for each c ∈ R, we find a test ϕc that maps the data to
{0, 1} such that

PH0(c)(ϕc = 1) ≤ α.

When ϕc is monotonic in the sense that ϕc1 ≤ ϕc2 almost surely for any c1 < c2 (i.e., H0(c2)
is rejected if H0(c1) is so), an upper confidence bound can be obtained by simply inverting
the test, i.e.,

f̂min = inf{c ∈ R : ϕc = 1}. (2)

However, for the problem considered in this note, it is unclear how to construct a monotonic
decision. When ϕc is not guaranteed to be monotonic, we can instead define

f̂min = inf{c : ϕc′ = 1, ∀c′ ≥ c}. (3)

The following result shows that it is a valid upper confidence bound.

Proposition 2. If PH0(c)(ϕc = 1) ≤ α for any c ∈ R,

P
(
fmin ≤ f̂min

)
≥ 1− α.

Proof. By definition, if fmin > f̂min, ϕfmin
= 1. Since H0(fmin) is true,

P
(
fmin > f̂min

)
≤ P (ϕfmin = 1) = PH0(fmin) (ϕfmin

= 1) ≤ α.

In some cases, (3) is hard to compute because it requires the entire path on the right of
c. Instead, we can start by discretizing c into a grid 0 = c0 < c1 < . . . < cN < cN+1 = 1
and then define

f̂min = cĵ , ĵ = min
{
j : ϕcj′ = 1, j′ ≥ j

}
. (4)

This is equivalent to apply the fixed sequence test that has over 35 years of history in medical
statistics [Sonnemann et al., 1986, Bauer, 1991]. The benefit is that it involves absolutely no
multiple testing adjustment and the test ϕc is just required to be pointwise valid for H0(c).
The number of grid points is entirely driven by the computation budget.

Here we provide a self-contained proof without resorting to the general argument.

Proposition 3. Proposition 2 holds for the upper confidence bound defined in (4).
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Proof. Let j0 = min{j : cj ≥ fmin}. Then H0(cj0) holds and

P(cĵ < fmin) = P(ĵ < j0) ≤ P(ϕj0 = 1) = PH0(cj0 )
(ϕj0 = 1) ≤ α.

In the following sections, we will construct valid tests for H0(c) with a fixed c ∈ R.

3 Method

3.1 Binary outcomes

In this subsection we assume Yi is binary. Let Y(i) be the outcome corresponding to the i-th
largest Z’s, i.e., Y(i) = YRi

where ZR1
≤ ZR2

≤ . . . ≤ ZRn
. Conditional on {Z1, . . . , Zn},

Y(1), . . . , Y(n) are independent Bernoulli variables. Under H0(c), for any entrywise increasing
function u : [0, 1]n 7→ R

u(Y(1), . . . , Y(n)) ⪰ u(B1(c), . . . , Bn(c)) (5)

where Bi(c)
i.i.d.∼ Ber(c) and ⪰ denotes stochastic dominance. Let

qn(α, c;u) = sup

{
x : P(u(B1(c), . . . , Bn(c)) ≤ x) < α

}
.

For any given u, qn(α, c;u) can be computed to any acculation by the Monte-Carlo method.
Then we can define a valid test for H0(c) as

ϕc = I
{
u(Y(1), . . . , Y(n)) ≤ qn(α, c;u)

}
.

One reasonable option for u is

u(y1, . . . , yn) = min
k∈{1,...,n}

y1 + . . .+ yk
k

. (6)

A shortcoming of this test statistic is that it could be dominated by the first few observations
(e.g., y1 = 0). Another option is

uf (y1, . . . , yn) = max
n/f(n)≤k≤n

Sk√
kc(1− c)

, where Sk =

k∑
i=1

(yi − c) (7)

for some f(n) ∈ [1, n]. In practice, one can simply choose f(n) = n. Unlike (6), the maxi-
mizer of (7) diverges, thereby allowing the statistic to account for a majority of observations.
Furthermore, the critical value can be approximated by a version of Darling-Erdös theorem.

Proposition 4. [Berkes and Weber [2006]] Assume that B1(c), . . . , Bn(c)
i.i.d.∼ Ber(c). As

n → ∞,

an,f (uf (B1(c), . . . , Bn(c))− bn,f )
d→ H,

where

an,f =
√
2 log log f(n), bn,f = an +

log log log f(n)− log 4π

2an
,

and H is the distribution with CDF exp{− exp{−x}}. In particular,

lim
n→∞

P
(
uf (B1(c), . . . , Bn(c)) ≤ bn,f − a−1

n,f log log

(
1

α

))
= α.
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3.2 Bounded outcomes

In this subsection, we consider the case of bounded outcomes. Without loss of generality,
we assume Yi ∈ [0, 1]. Let

E(η) = E[(1− Y )I(Z > η)] + E[Y I(Z ≤ η)] · 1

1 + c
+ E[Y I(Z > η)] · c

1 + c
.

Then we can rewrite E(η) as

E(η) = E
[(

1− Y +
c

1 + c
Y

)
I(Z > η) +

1

1 + c
Y I(Z ≤ η)

]
= E

[
E[
(
1− 1

1 + c
Y

)
I(Z > η) +

1

1 + c
Y I(Z ≤ η) | Z]

]
= E

[
E
[(

1− 1

1 + c
g(Z)

)
I(Z > η) +

1

1 + c
g(Z)I(Z ≤ η) | Z

]]
.

Since I(Z > η) + I(Z ≤ η) = 1,

E(η) ≥ E
[
min

{
1− 1

1 + c
g(Z),

1

1 + c
g(Z)

}]
.

Under H0(c), it is clear that

E(η) ≥ c

1 + c
.

This yields a testable implication. We estimate E(η) by the empirical analogue:

Ê(η) ≜ 1

n

n∑
i=1

{
I(Yi = 0, Zi ≥ η) + I(Yi = 1, Zi < η) · 1

1 + c
+ I(Yi = 1, Zi ≥ η) · c

1 + c

}
.

(8)
Note that

I(Yi = 0, Zi ≥ η) + I(Yi = 1, Zi < η) · 1

1 + c
+ I(Yi = 1, Zi ≥ η) · c

1 + c
∈ [0, 1].

By Theorem 1 in Appendix A, we can compute tn(α, ξ) by inverting the tail probability
bound such that with probability 1− α,

sup
η∈[0,1]

E(η)− Ê(η)√
E(η) + ξ

≤ tn(α, ξ).

In particular, we can choose ξ based on the strategy discussed in Appendix F.3 of An-
gelopoulos et al. [2021]. As a result, with probability 1− α,

E(η) ≤ Ê(η) + t2n(α, ξ)

2
+ tn(α, ξ)

√
Ê(η) + ξ +

t2n(α, ξ)

4
, ∀η ∈ [0, 1].

This implies a valid test for H0(c):

ϕc = I

(
inf

η∈[0,1]
Ê(η) + t2n(α, ξ)

2
+ tn(α, ξ)

√
Ê(η) + ξ +

t2n(α, ξ)

4
<

c

1 + c

)
.

Note that ϕc is non-monotonic in c. In addition, ϕc is not easy to compute when ξ is
chosen based on the technique described in Appendix F.3 of Angelopoulos et al. [2021]
which depends on c intricately. Nonetheless, we can compute an upper bound by (4).
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A A computable concentration inequality for self-normalized
empirical processes

This section reviews the concentration inequality derived in Appendix G of Angelopoulos
et al. [2021]. It is typically tighter than all other computable concentration inequalities
(that is, the ones with explicit constants) in the past 50 years.

Let W1, . . . ,Wn be i.i.d. random variables and S(λ;w) be a function of w indexed by
a (potentially multivariate) parameter λ ∈ Λ that takes value in [0, 1] for any λ and w. In
our context, λ = η,Wi = (Yi, Zi) and

S(λ;Wi) = I(Yi = 0, Zi ≥ ξ) + I(Yi = 1, Zi < ξ) · 1

1 + c
+ I(Yi = 1, Zi ≥ ξ) · c

1 + c
.

Further let

ŝn(λ) =
1

n

n∑
i=1

S(λ;Wi), s(λ) = E[S(λ;Wi)]. (9)

Furthermore, we define ∆(n) as the

∆(n) = sup
z1,...,zn

∣∣∣∣{{S(λ; z1), . . . , S(λ; zn)} : λ ∈ Λ
}∣∣∣∣. (10)

In the literature, log∆(n) is often referred to as the growth function ([Vapnik, 1995, Section
2]).
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Theorem 1. For any ξ ≥ 0,

P

(
sup
λ∈Λ

s(λ)− ŝn(λ)√
s(λ) + ξ

≥ t

)

≤ min

{
inf

γ∈(0,1),n′∈Z+

∆(n+ n′) exp{−g2(t;n, n
′, γ, κ−)}

1− exp{−g1(t;n′, γ, ξ)}
, inf
γ∈(0,1)

∆(2n)g̃

(√
n(1+ξ)

2 (1− γ)t

)
1− exp{−g1(t;n, γ, ξ)}

}
,

where

g1(t;n
′, γ, κ) = max

{
n′t2

2

γ2

1 + γ2t2/36κ
, log

(
n′t2γ2

(
√
1 + κ−

√
κ)2

)}
,

g2(t;n, n
′, γ, κ) =

nt2

2

(
n′

n+ n′

)2
(1− γ)2

1 + (1− γ)2t2/36κ
,

κ+ = ξ +
t2

2
+ t

√
t2

4
+ ξ, κ− = ξ +

n+ γn′

n+ n′

√
κ+,

and g̃(x) = min{g̃1(x), g̃2(x), g̃3(x)} with

g̃1(x) = c1(1− Φ(x)), c1 = 1/4(1− Φ(
√
2)) ≈ 3.178,

g̃2(x) = 1− Φ(x) +
c2

9 + x2
exp

{
−x2

2

}
, c2 = 5

√
e(2Φ(1)− 1) ≈ 5.628,

g̃3(x) = exp

{
−x2

2

}
.
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