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ML in critical applications

ML tools make potentially high-stakes decisions: self-driving cars, disease diagnosis, ...

S8

Can we have reliable uncertainty quantification (confidence) in these predictions?



Today's predictive algorithms

random forests, gradient boosting neural networks
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Previous work on conformal inference
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> i.i.d. training samples (X;,Y;), i=1,...,n

> Test point (X, Y = 7) from the same distribution

» Conformal inference Vovk et al. '99, Papadopoulos et al. '12, Lei et al. '18, Barber et al. '19, Romano et al. '19

Constructs predictive interval C(x) with P (Y € é(X)) > 90%

» Holds in finite samples for any distribution of (X, Y) and any predictive algorithm f



Statistical inference is more complicated than predicting “the seen”
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Statistical inference is more complicated than predicting “the seen”

» Counterfactual
» Causal inference, offline policy evaluation, algorithmic fairness, ...
» What would have been one's response had one taken the treatment

» Observable for those in a particular “treatment arm”

> Time-to-event (survival) outcome

» Survival analysis, industrial life testing, economics, ...
> Censored by study termination, loss to follow-up, ...

> Observable for those whose event (e.g., death) has occurred

[ Goal: construct calibrated prediction intervals for partially observed outcomes




Part |: conformalized counterfactual prediction

Emmanuel Candes



Inference of counterfactuals? Potential outcomes neyman 23, Rubin 74

Assumptions science table

Unit z; T; Yi(1) Yi(0) Y

> stable unit treatment values (SUTVA)
Treatment Group

1 v 1 v X Yi(1)
2 v 1 v  x Y
3 v 1 v x Y1)
4 v 1 v x Y
b) v’ 1 v’ X Y5(1)
Control Group
6 v 0 x v Y0
7 v 0 x v Y0
8 v 0 x v Y0
9 v 0 b v Ye(0)
10 v 0 x v Yi(0)
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Inference of counterfactuals? Potential outcomes neyman 23, Rubin 74

Assumptions science table

Unit z; T; Yi(1) Yi(0) Y

> stable unit treatment values (SUTVA)
Treatment Group

> super population (i.i.d.) 1 v 1 v’ X Yi(1)
2 v 1 v x  Y)
» unconfoundedness (Y(1), Y(0)) 1L T | X 38 v 1 v X Y(1)
4 v 1 v x Y
5 v’ 1 v’ X Y5(1)
Control Group

6 v 0 x v Y0
Goal: find interval estimate él(X), s.t., T v 0 X v Y7(0)
8 v 0 x v Y0
A 9 v 0 x v Y0

P(Y(1) € Gi(X)| T =0) > 90% ’
(Y(1) e G(X) | ) = 90% 0 v 0 x v Y




Counterfactual inference

Assign treatment by a coin toss for each subject based on the propensity score e(x)

& P(treated | X = z) = e(z)

-

) P(control | X = z) =1 — e(x)

1



Counterfactual inference

Each subject has potential outcomes (Y(1), Y(0)) and the observed outcome Y°b

® 6 6 0 ©° ¢ 6 6 6 6 .
Il B I A D B EE e

Unobserved



Counterfactual inference
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Counterfactual inference

® 6 06 0 O
| EEEm . Observed

Unobserved

Use observed treated units @ ?



Covariate shift under unconfoundedness Y(1) 1L T | X

Pxir—1 X Py(1)x

® 6 06 0 O
B B B Em Em Observed

Unobserved

PX|T:O X Py(1)1x

Distribution mismatch! Covariate shift



Covariate shift under unconfoundedness Y(1) 1. T | X

Y(1)

density

Real world (treated units)

Y(1)

density

Counterfactual world




The counterfactual inference problem and covariate shift

Use i.i.d. samples (observed treated units) from Px 7r—; X Py1)x to construct fl(X) with

]P)(Y(l) S él(X)) > 90% under PX\T:O X PY(1)|X

N dpx|7'=0 ) 1—e(x)
dPx|T=1 e(x)

Covariate shift w(x)



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)
Tibshirani, Barber, Candés, Ramdas ('19); Romano, Patterson, Candeés ('19)

i.d.d. A
(X,', Y,) ~" Px X PY\X - P(XA,Y)NQXXPHX(Y S C(X)) > 90%



Weighted CQR

Randomly split (X;, Y?°")7,—1 into two folds

1

Y(1)
Y(1)

Proper training set Calibration set



Weighted CQR

Y(1)

Fit 5& 95%-th quantiles of Y (1) | X on training fold

—— Estimated low & high quantiles

Apply quantile regression

Y(1)
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Weighted CQR

Y(1)

—— Estimated low & high quantiles

Apply quantile regression

Y(1)

Calibration set




Weighted CQR

Signed distance: V; = max{o.0s(X;) — Yi(1), Yi(1) — Go.05(X:)}

Unweighted ‘

Density

Y(1)

Conformity scores

Histogram of signed distances

Calibrate




Weighted CQR

Weighted dist.: Y7 1 pi(x)dv; + Poc(X)ds0 Where pi(x) = w(X;)/ (37, w(Xi) + w(x))

—— Weighted

Covariate shift w(X)

Y(1)
Density

X Conformity scores

Calibrate Histogram weighted by w(x)



Weighted CQR

Cutoff: Q(x) £ Quantile (90%, > " ; pi(X)dv; + Poo(x)dcc)

——  Weighted

Covariate shift w(X)

No covariate shﬁ;W(X)=1

Y(1)
Density

X Conformity scores Q)

Calibrate Find the 90%-th quantile Q(x)



Weighted CQR

Y(1)

Interval: Cy(x) = [do.0s(x) — Q(X), do.05(x) + Q(x)]

——  Weighted

Covariate shift w(X)

Density

Conformity scores Q)

Find the 90%-th quantile Q(x)

Calibrate



Near-exact counterfactual inference in finite samples

Theorem (L. and Candeés, '20, for randomized experiments)
Set w(x) = (1 — e(x))/e(x) (e(x) known) in weighted split-CQR. Then

90% < P(Y(1) € Ci(X) | T =0) < 90% + c/n

» [ower bound holds without extra assumption
» Upper bound holds if V;'s are a.s. distinct & overlap holds, and ¢ only depends on the overlap

v" Any conditional distribution Py(1)x

V" Any sample size q(m)‘ ‘ Y Cix)

v Any procedure to fit conditional quantiles

» Reconcile Bayesians and frequentists (if Q(x) > 0)



Approximate counterfactual inference

Theorem (informal, L. and Candes, 2020, for observational studies)

Let é(x) be an estimate of e(x). Set w(x) = (1 — é(x))/é(x) in weighted split-CQR. Then

P(Y(1) € Ci(X)| T =0) ~ 90%

if (1) é(x) = e(x) OR (2) Go.05/0.95(X) = qo.05/0.95()-

Similar to the double robustness for ATE



Adaptivity to good outcome modelling

Theorem (informal, L. and Candes, 2020, for observational studies)

If G0.05/0.95(x) & do.05/0.95(X),
C1(x) ~ [qo.05(x), Go.os(x)] (oracle counterfactual interval),

and P(Y(1) € Gi(X) | T =0, X) ~ 90% with high probability (conditional coverage!)

> [go.05(x), go.o5(x)] is the optimal interval for symmetric unimodal conditional distribution
> Continue to hOld If (0057 095) — (ﬁ,ﬁ + 1 — a), e.g., (0017 091) Romano and Sesia, '21
» Good outcome modelling = good intervals and conditional coverage!

> Robustness (marginal coverage) + adaptivity (efficiency and conditional coverage)



Technical conditions

Theorem (L. and Candes, '20)

Assume one of the following holds:
(1) E|1/8(X) — 1/e(X)| = o(1),
(2) P(Y(1) =y | X = x) uniformly bounded away from 0 and oo and there exists 6 > 0

E[1/8(X)"*°] = 0(1), E[H(X)/&(X)],E[H(X)/e(X)] = o(1),

where H(x) = max{|§o.05(x) — go.05(x)|, |o.05(x) — go.05(x)|}.

Then
P(Y(1) € Gi(X) | T =0) > 90% — o(1).

Furthermore, if (2) holds, then

P(Y(1) € Gi(X)| T =0,X) > 90% — op(1).



From counterfactuals to individual treatment effects (ITE)

1.1.d.
(X3, Y;°) "~" Pxir—g X Py(g)x

- N N N N N X~
id.d. ~ WX
(Xi, Y;°) "~" Pxiroq X Pyayx

L. and Candes, '20

Prediction interval for ITE = Y(1) — Y(0) (not CATE = E[ITE | X])

Px~ax (ITE € Gre(X)) > 90%



Our R package cfcausal (github.com/lihualei71/cfcausal)

cfcausal [[BXJ A  Reference Articles ~

cfcausal License

Full license
An R package for conformal inference of counterfactuals and individual treatment effects MIT + file LICENSE
Citation
Overview Giting cfcausal
This R package implements weighted conformal inference-based procedures for counterfactuals and individual treatment effects Developers
proposed in our paper: Conformal Inference of Counterfactuals and Individual Treatment Effects. It includes both the split conformal Lihua Lei
inference and cross-validation+. For each type of conformal inference, both conformalized quantile regression (CQR) and standard Maintainer

conformal inference are supported. It provides a pool of convenient learners and allows flexible user-defined learners for conditional
mean and quantiles.

« conformalCf() produces intervals for counterfactuals or outcomes with missing values in general.

« conformalIte() produces intervals for individual treatment effects with a binary treatment under the potential outcome
framework.

= conformal() provides a generic k of weit conformal i for continuous outcomes.

« conformalInt() provides a generic framework of weighted conformal inference for interval outcomes.

Installation

if (!require("devtools")){
install.packages("devtools")

¥

devtools::install_github("lihualei71/cfcausal")



Summary for conformalized counterfactual inference

Conformal inference of counterfactuals is reliable

» Randomized experiments: near-exact coverage in finite samples with any black-box

» Observational studies: doubly robust guarantees of coverage



Part Il: conformalized survival analysis

Zhimei Ren Emmanuel Candes



Right Censored Data: Type-l Censoring

Patient 1
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Right Censored Data: Type-l Censoring

Date of Confirmation



Right Censored Data: Type-l Censoring
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Right Censored Data: Type-l Censoring

T : survival time

T : survival time




Right Censored Data: Type-l Censoring




Right Censored Data: Type-l Censoring
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Right Censored Data: Type-l Censoring
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A reliable predictive system for survival times

Phie_ ==
pidd

Patient-level data “Conformal wrapper” Lower confidence bound

[ Find lower predictive bound 7A'10(X), st. P(T > 7A'10(X)) > 90%




First thought: survival times as counterfactuals?

> Event indicator A = /(T < C):

7_:{ T fA=1

C ifA=0

» Treat T as a “potential outcome” under the “treatment” A =17



First thought: survival times as counterfactuals?

> Event indicator A = /(T < C):

7_:{ T fA=1

C ifA=0
» Treat T as a “potential outcome” under the “treatment” A =17

» Invalid because “unconfoundedness” does not hold:

(T,OLH(T<O) | X

> (X;, T;)a,=1 has shifts in both the covariate distribution and conditional distribution



Conformalized survival analysis

Order the units by censoring times C;

® » Death

[ » Death




Conformalized survival analysis

Study population: C; > ¢y (¢ chosen via data splitting)




Conformalized survival analysis

On this population (C > ), the surrogate outcome T A ¢y = TAcis always observable




Conformalized survival analysis




Covariate shift under conditionally independent censoring T I C | X

Subpopulation with C > ¢

Pryc,x

T Acy

T Acy

density

density




Conformalized survival analysis

» Assumptions:
> (T, C,X) arei.id.
» Conditionally independent censoring (T 1L C | X)

> Type-l censoring (also useful beyond this setting)
> Finite-sample validity: Ti,(X) is valid if P(C | X) is known

» Double robustness: Tio(X) is approximately valid if P(C | X) or P(T | X) is estimated well



Part Ill: what else?



Election night model: prediction intervals for aggregated outcomes

The Washington Post Election Night Model Georgia Senate Runoff Election
Parametric conformal inference
Where the vole could end up
Viow detals Ratio of average length
Breaking down the estimates 10.0

Urban counties.

. oo I .
3
-
Suburban counties L\D
o, oo I g ™
e | E
g
B s 2-10X narrower intervals!

Rural counties

soen [N

0 1000 2000

Number of reported precincts

P Zi:precincts VOtesz' € é({Xz }precincts) 2 90%

N

~
aggregated outcome

John Cherian Lenny Bronner



Outlier detection with conformal p-values

"Pure" inlier data:

Xi,...

"Mixed" test data:
Knt1s- s Xntm

Conformal wrapper

4

Conformal
P-values

e .
[ ]

Stephen Bates Emmanuel Candeés Yaniv Romano Matteo Sesia



Risk calibrated prediction

consomme

»

table lamp spotlight

consomme

black: correct label
red: raw output
teal: our output

teal: false positive vhite: ositiv
black: true negative red: false negative

Tumor/Polyp detection Hierarchical classification

P|E[L(Y,Y)] <~ ]| >90%
N————

risk

Anastasios Stephen Bates Emmanuel Candés Michael Jordan  Jitendra Malik
Angelopoulos



Risk calibrated prediction

3D rendering of T0995 prediction (A)

s

length of lower interval (4) length of upper interval (4)

%

P | E[L(Y,Y)] <~ | > 90%
N———

Anastasios . " . 1
& risk
Angelopoulos Stephen Bates Emmanuel Candés Michael Jordan  Jitendra Malik



What can conformal inference offer to statistics?



v

v

v

v

v

What can conformal inference offer to statistics? A LOT!

Causal inference

Time-to-event analysis ‘
Data ‘ TRUSTED |
Election night model ‘ ' » —

Outlier detection

Risk calibration

Valid inference under partial/complete misspecification!



Long-term career goal: principles for inference under misspecification

» Network: (hierarchical) clustering under misspecified SBMs
w/ Tianxi Li, Sharmo Bhattacharyya, Purna Sarkar, Peter Bickel, Liza Levina, Xiaodong Li, Xingmei Lou

» Multiple testing: FDR control with side information
w/ Will Fithian, Aaditya Ramdas, Chiao-Yu Yang, Nhat Ho, Yixiang Luo

» Causal inference:

» Randomized experiments: model-free regression adjustment
w/ Peng Ding
» Observational studies: distribution-free assessment of overlap

w/ Alex D'’Amour, Peng Ding, Avi Feller, Jas Sekhon

» High-d inference: finite-sample valid test for linear models with exchangeable errors

w/ Peter Bickel

» Econometrics: panel data analysis under heterogeneous treatment effects

vv/" Dmitry Arkhangelsky, Guido Imbens, Xiaoman Luo



All models are wrong, but some are (hopefully) useful


lihualei71.github.io

All models are wrong, but we can make them safe and useful!
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All models are wrong, but we can make them safe and useful!

Thank you!

Check out my CV and other works on my website!

lihualei71.github.io
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